This is an Accepted Manuscript version of an article published by Taylor \& Francis in The American Mathematical Monthly on September 16, 2022. The complete citation to this paper is:

Josué Tonelli-Cueto (2022) A Geometric Summation of the Geometric Series, The American Mathematical Monthly, DOI: 10.1080/00029890.2022.2115825

A Geometric Summation of the Geometric Series

Let k be a finite field of size q. The n-dimensional projective space over k, $\mathbb{P}^{n}(k)$, is the set of orbits of $k^{n+1} \backslash\{0\}$ under the action of k^{*} given by scalar multiplication. Therefore $\left|\mathbb{P}^{n}(k)\right|=\frac{q^{n+1}-1}{q-1}$ since all orbits have the same size. Now, since the decomposition of $\mathbb{P}^{n}(k)$ into a disjoint union of affine spaces $\mathbb{P}^{n}(k)=A_{0} \cup A_{1} \cup \cdots \cup A_{n}$ where

$$
A_{i}:=\left\{\left(x_{0}: \cdots: x_{i-1}: 1: 0: \cdots: 0\right) \mid x_{j} \in k\right\}
$$

is in bijection with the affine space k^{i}, then $\left|\mathbb{P}^{n}(k)\right|=\sum_{i=0}^{n} q^{i}$. Thus for all n and power of primes q,

$$
\sum_{i=0}^{n} q^{i}=\frac{q^{n+1}-1}{q-1}
$$

Since this identity of univariate rational functions over \mathbb{Q} is true for an infinite amount of numbers, it translates into an equality of rational functions. Hence

$$
\sum_{i=0}^{n} X^{i}=\frac{X^{n+1}-1}{X-1}
$$

with X indeterminate. Can this method be used to prove other identities by interpreting them geometrically using algebraic varieties over finite fields?
—Submitted by Josué Tonelli-Cueto, Inria Paris \& IMJ-PRG

