A p-adic Descartes solver: the Strassmann solver

The University of Texas at San Antonio ${ }^{\text {m }}$

Josué Tonelli-Cueto

The University of Texas at San Antonio
josue.tonelli.cueto@bizkaia.eu

UTSA

Theorem

Let $\left.f=\sum_{k} f_{k} T^{k} \in \mathbb{R} T\right]$ be an univariate polynomial and let $V(f)$ be the number of sign changes in the sequence $f_{0}, f_{1}, f_{2}, \ldots$ (with zeros omitted). Then $\# \mathcal{Z}\left(f, \mathbb{R}_{+}\right) \leq \mathrm{V}(f)$
where $\mathcal{Z}\left(f, \mathbb{R}_{+}\right)$is the set of positive zeros.

Where did it appear?

GEOMETRIE. Livre premier.
 y employer que des cercles or or des lignes drotes.

Properties

$\vee(f ; a, b):=\vee\left((T+1)^{\mathrm{d}(f)} f\left(\frac{a+b T}{T+1}\right)\right)$
Overcounting
$\# \mathcal{Z}(f,(a, b)) \leq \bigvee(f ; a, b)$.
Exactness I
If $\vee(\boldsymbol{f} ; \boldsymbol{a}, \boldsymbol{b}) \leq 1$, then
$\# Z(f,(a, b)) \leq \bigvee(f ; a, b)$
Exactness II (Obreshkoff)
Let
$\mathcal{D}_{a, b}:=\frac{a+b}{2}\left\{z \in \mathbb{C}:\left|z-\frac{1}{\tan \frac{1}{\mathrm{~d}(f)+2}}\right|<\frac{1}{\sin \frac{1}{\mathrm{~d}(f)+2}}\right\}$
Then
$\# \mathcal{Z}\left(f, \mathcal{D}_{a, b} \cap \overline{\mathcal{D}_{a, b}}\right) \leq \vee(f ; a, b) \leq \# \mathcal{Z}\left(f, \mathcal{D}_{a, b} \cup \overline{\mathcal{D}_{a, b}}\right)$

Subdivision Property

If $\bigcup_{k}\left(a_{k}, b_{k}\right) \subset(a, b)$ is a disjoint union, then

$$
\sum_{k} \mathrm{~V}\left(f ; a_{k}, b_{k}\right) \leq \mathrm{V}(f ; a, b)
$$

Descartes Solver

Input: $f \in \mathbb{R} T]$ \& $=(a, b)$
Output: Isolating intervals for $\mathcal{Z}(f,(a, b))$.
Routine:
Subdivide (a, b) into smaller intervals, until for all obtained intervals J ,
$\mathrm{V}(f, \mathrm{~J}) \leq 1$.

Complexity

$\mathfrak{f}=\sum_{k=0}^{d} \mathfrak{F}_{k} \top^{k} \in \mathbb{R}[T]$ random polynomial of degree d with i.i.d. random coefficients uniformly distributed in $[-1,1]$.

Expected Number of Arithmetic Operations:
$\tilde{O}\left(d^{2}\right)$

Strassmann Solver

Input: $f \in \mathbb{R}[T]$ \& $=x+p^{-s}$
Output: Isolating intervals for $\mathcal{Z}(f, B)$.
Routine:
Subdivide B into smaller closed balls,
until for all obtained balls $y+p^{-t} \mathbb{Z}_{p}$,
$\mathrm{St}\left(f ; y, p^{-t}\right) \leq 1$

An important detail

To avoid checking $p+1$ balls at each subdivision step, we use the Cantor-Zassenhaus factorization algorithm

Complexity \& Precision

$\mathfrak{f}=\sum_{k=0}^{d} \mathfrak{f}_{k} \top^{k} \in \mathbb{Z}_{p}[T]$ random p-adic polynomial of degree d with i.i.d. random coefficients uniformly distributed in \mathbb{Z}_{p}.

Expected Number of Arithmetic Operation:
$O\left(d^{2} \log ^{3} d \log p\right)$
If $p \leq \tilde{O}(d)$,

$$
\tilde{O}(d p) \leq \tilde{O}\left(d^{2}\right)
$$

Strassmann's Theorem

Theorem

Let $\left.f=\sum_{k} f_{k} T^{k} \in \mathbb{Q}_{p} T\right]$ be an univariate polynomial and let $\quad \operatorname{St}(f)=\max \left\{k \mid\right.$ for all $\left.I \leq k,\left|f_{f}\right|_{p} \leq\left|f_{k}\right|_{\rho}\right\}$
be the so-called Strassmann index. Then

$$
\# \mathcal{Z}\left(f, \mathbb{Z}_{p}\right) \leq \operatorname{St}(f)
$$

where $\mathcal{Z}\left(f, \mathbb{Z}_{p}\right)$ is the set of p-adic integer roots.

Holocaust Victim

> HIER WOHNTÚZ REINHOLD STRASSMANN JG. 1893 OEPORTIERT 9.2.1944 THERESIENSTADT. OEPORTIERT 23.10.1944 AUSCHWITZ ERMORDET.

\& origin, Reinhold As many others Germans of Jewish Oictim. Today, Stolpersteins, as Strassmann was a Holocaust victim. Today, Sta places where the one above, lie all over Europe indicating -used to live. Holocaust victims - of Jewish origin or not - used to live.

Properties

A p-adic Smale's 17th Problem?

Fix a prime p. Let $\mathfrak{f} \in \mathbb{Z}_{p}\left(X_{1}, \ldots, X_{n}\right]^{n}$ be a random p-adic polynomial system such that

$$
\tilde{f}_{k}=\sum_{|\alpha| \leq d_{k}} \tilde{f}_{k, \alpha} X^{\alpha}
$$

with the $\mathfrak{f}_{k, \alpha}$ independent random p-adic variable uniformly distributed in \mathbb{Z}_{p}. Is there a deterministic algorithm that decides whether or not \mathfrak{q} has a zero in \mathbb{Z}_{p}^{n} (resp. \mathbb{Q}_{p}^{n}) in average polynomial-time with respect the number of coefficients?

