A *p*-adic Descartes solver: the Strassmann solver

The University of Texas at San Antonio[™]

Josué Tonelli-Cueto

The University of Texas at San Antonio josue.tonelli.cueto@bizkaia.eu

Descartes's Rule of Signs

DESCARTES SOLVER

Input: $f \in \mathbb{R}[T] \& I = (a, b)$ **Output**: Isolating intervals for $\mathcal{Z}(f, (a, b))$. Routine: Subdivide (*a*, *b*) into smaller intervals, until for all obtained intervals J,

 $V(\boldsymbol{f}, \mathsf{J}) \leq 1.$

Complexity

 $= \sum_{k=0}^{d} \mathfrak{f}_k \mathsf{T}^k \in \mathbb{R}[\mathsf{T}]$ random polynomial of degree dwith i.i.d. random coefficients uniformly distributed in [-1, 1].

Strassmann's Theorem

Expected Number of Arithmetic Operations:

 $\widetilde{O}\left(\mathbf{d}^{2}
ight)$

STRASSMANN SOLVER

Input: $f \in \mathbb{R}[T] \& B = x + p^{-s}$ **Output**: Isolating intervals for $\mathcal{Z}(f, B)$. Routine: Subdivide B into smaller closed balls, until for all obtained balls $y + p^{-t} \mathbb{Z}_p$,

 $\mathsf{St}(\boldsymbol{f};\boldsymbol{y},\boldsymbol{p}^{-t}) \leq 1.$

An important detail

To avoid checking p+1 balls at each subdivision step, we use the Cantor-Zassenhaus factorization algorithm

Complexity & Precision

Theorem

Let $f = \sum_{k} f_{k} T^{k} \in \mathbb{Q}_{p}[T]$ be an univariate polynomial and let $St(f) = \max\{k \mid \text{for all } I \leq k, |f_I|_p \leq |f_k|_p\}$ be the so-called Strassmann index. Then $\# \mathcal{Z}(f, \mathbb{Z}_p) \leq \operatorname{St}(f)$

where $\mathcal{Z}(f, \mathbb{Z}_p)$ is the set of *p*-adic integer roots.

HIER WOHNTE

JG. 1893

DEPORTIERT 9.2.1944

THERESIENSTADT

Holocaust Victim

 $f = \sum_{k=0}^{d} f_k T^k \in \mathbb{Z}_p[T]$ random *p*-adic polynomial of degree *d* with i.i.d. random coefficients uniformly distributed in \mathbb{Z}_{p} .

Expected Number of Arithmetic Operation:

 $O(d^2 \log^3 d \log p)$

If $p \leq \tilde{O}(d)$,

 $\tilde{O}(dp) \leq \tilde{O}(d^2)$

Expected Needed Precision:

 $d + \tilde{O}(1)$

A *p*-adic Smale's 17th Problem?

Fix a prime p. Let $f \in \mathbb{Z}_p[X_1, \ldots, X_n]^n$ be a random p-adic polynomial system such that

 $\mathfrak{f}_k = \sum_{|\alpha| \le d_k} \mathfrak{f}_{k,\alpha} \mathsf{X}^{\alpha}$

with the $f_{k,\alpha}$ independent random *p*-adic variable uniformly distributed in \mathbb{Z}_p . Is there a deterministic algorithm that decides

DEPORTIERT 23.10-1944 AUSCHWITZ ERMORDET	
As many others Germans of Strassmann was a Holocaust viction the one above, lie all over Europe Holocaust victims—of Jewish orig	Jewish origin, Reinhold m. Today, Stolpersteins, as indicating the places where gin or not—used to live.
Properties	
St(<i>f</i> ; <i>x</i> , <i>p</i> ^{-s}) := St	(<i>f</i> (<i>x</i> + <i>p</i> ^s T))
Overcounting	
$\# \mathcal{Z}(f, x + p^{-s} \mathbb{Z}_p) \leq$	≤ St(<i>f</i> ; <i>x</i> , <i>p</i> ^{-s}).
Exactness I	
If $\operatorname{St}(f; x, p^{-s}) \leq 1$, then	
$\# \mathcal{Z}(f, x + p^{-s} \mathbb{Z}_p) \leq$	< St(<i>f</i> ; <i>x</i> , <i>p</i> ^{-s}).

Exactness II (Obreshkoff)

 $\sum V(\boldsymbol{f}; \boldsymbol{a}_{\boldsymbol{k}}, \boldsymbol{b}_{\boldsymbol{k}}) \leq V(\boldsymbol{f}; \boldsymbol{a}, \boldsymbol{b}).$

whether or not \mathfrak{f} has a zero in \mathbb{Z}_p^n (resp. \mathbb{Q}_p^n) in average polynomial-time with respect the number of coefficients?

Exactness II

Let $\mathcal{D}_{x,\rho^{-s}} := x + \rho^{-s} \{ z \in \mathbb{C}_{\rho} : |z| < 1 \}.$ Then $\operatorname{St}(f; x, p^{-s}) \leq \# \mathcal{Z}(f, \mathcal{D}_{x, p^{-s}}).$

Subdivision Property

If $\bigcup_k (x_k + p^{-s_k} \mathbb{Z}_p) \subset x + p^{-s} \mathbb{Z}_p$ is a disjoint union, then

 $\sum V(\boldsymbol{f}; \boldsymbol{x}_{\boldsymbol{k}}, \boldsymbol{p}^{-\boldsymbol{s}_{\boldsymbol{k}}}) \leq \operatorname{St}(\boldsymbol{f}; \boldsymbol{x}, \boldsymbol{p}^{-\boldsymbol{s}}).$

Poster supported by NSF grant DMS 2232812