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The long-term goal



Grid and subdivision methods: What are they for?

Grid methods:

- Feasibility of real polynomial systems (Cucker & Smale; 1999)

- Approximating and counting real zeros (Cucker, Krick, Malajovich
& Wschebor; 2008, 2009, 2012)

- Homology of real algebraic sets (Cucker, Krick & Shub; 2012)

- Homology of semialgebraic sets (Biirgisser, Cucker & Lairez;
2018) (Blrgisser, Cucker & T-C; ISSAC'19, 2020+)

Subdivision methods:

- Root isolation of univariate polynomials (Pan, Davenport, Yap,
Sagraloff, Mehlhorn, Rouillier, Mourrain, Yakoubsohn...) Too many
to write them all!

- Root isolation of polynomial systems (Dedieu & Yakoubsohn;
1991) (Mourrain& Pavone; 2009) (Mantzaflaris, Mourrain &
Tsigaridas; 2011)

- PL approximation of curves and surfaces (Plantinga & Vegter;
2004) (Galehouse; 2009) (Burr, Gao & Tsigaridas; ISSAC'17)



Grid and subdivision methods: What is their complexity?

Techniques for controlling complexity:

- Root separation bounds (Davenport, Mahler & Mignotte) (Emiris,
Mourrain & Tsigaridas; ISSAC'10) — Bit-complexity bounds

- Variety separation bounds (D’Andrea, Krick & Sombra; 2013)
(Burr, Gao & Tsigaridas; ISSAC'17) — Bit-complexity bounds

- Continuous amortization (Burr, Krahmer & Yap; 2009) (Burr; 2016)
+ Condition-based complexity + Probabilistic analysis (Cucker,
Ergiir & T-C.; ISSAC'19, 2020+) — Average and smoothed
complexity bounds



Condition-based complexity

Average and smoothed complexity bounds!

MAIN ISSUE:
Condition numbers are designed for the sphere,
but the algorithms work in the cube!

Example:
Covering the cube efficiently is easy,
but covering the sphere is not so easy.



Condition numbers for the cube?
THAT IS OUR OBJECTIVE!




Geometry on the sphere = Euclidean norm  ||x|| := y/>_; |Xi|?
Geometry on the cube = oo-norm [IX]|oo := max; |X]
Goal:

Geometry on the sphere  —  Geometry on the cube
Euclidean norm  — oco-norm
Warning: The oo-norm does not come from an inner product!

Hopes:

- Better complexity estimates
- Faster algorithms
- Better understanding of subdivision methods

Antecedent exploring other norms: (Cucker, Ergiir & T-C.; SIAM AG'19)



Results of the accepted paper

- Condition theory for hypersurfaces in the cube
- Gaussian polynomials
- Polynomials with restricted support (up to assumptions)

We showcase our results with:

- Separation bounds for roots of univariate polynomials in (0, 1)
- Plantinga-Vegter algorithm



Polynomial inequalities
and condition




Norm for polynomials control evaluations, variations...

!

Condition-based complexity theory

Our choice:

Il = Ifal

the 1-norm for polynomials

Why?: ||f]|1 behaves live the dual of |||/



Polynomial inequalities

f€Pug:={9 €R[,...,Xs] | degg < d}, x,y € I":=[-1,1]",ve R"

- Control of the evaluation

O < 1Al
- Control of the derivative |
KV I < dliflllIv]o
+ Control of the derivative |l
1Vl < diflls
- Lipschitz properties for fand its derivatives

f(x) = F)I < dlifln]Ix = Ylloo
IVif = Vyfll < d(d = DIIfllallx = ¥l



Local condition number

Definition (T.-C., Tsigaridas; ISSAC'20)

Let f € P, 4 and x € I", the local condition number of f at x is the

quantity
111l

UX) = 0L SV}

Important observation: C(f, x) = oo iff x is a singular zero of f



Properties of the local condition number

- Regularity inequality
either [fO)I/[Iflln = 1/ C(f, x) or [[Vifll/(dlIfll) = 1/ C(f, ).
- 1st Lipschitz property
F=Ifllh/ C(f, x) is 1-Lipschitz
- 2nd Lipschitz property
"> x — 1/ C(f,x) is d-Lipschitz
- Condition Number Theorem

[Iflla/dista (f, 2x) < C(f, ) < 2d |[f]l1/dista (f, 2x)

where ¥, := {g € P, 4 | x is a singular zero of f}
- Higher Derivative Estimate. If C(f, x)|f(X)|/|Ifllx < 1, then

1(7,X) < 5(d = VAN,

where ~(f, x) is Smale’s v

All we need for condition-based complexity analyses!
M



Application 1:
Separation of roots




Separation of roots

Recall...

Aq(f) = dist(a, f7'(0) \ {a})

Theorem (T.-C. & Tsigaridas; ISSAC'20)
Let f € Py 4. Then, for every complex o € f~'(0) such that

dist(ev, 1) < 1/(3(d — 1) C(f)),

1
802 5@y

where

C(f) := sup C(f, x).

xel

l.e., the condition number controls the separation of the roots



Probabilistic results




Randomness model I: Two properties

(SG) We call a random variable ¢ subgaussian, if there exist a K > 0
such that forall t > K,

P(|z| > t) < 2exp(—t2/K?).

The smallest such K is the subgaussian constant of .

(AC) A random variable ¢ has the anti-concentration property, if there
exists a p > 0, such that forall e > 0,

max{P(jr —u| <e) | ueR} < 2pe.

The smallest such p is the anti-concentration constant of .



Randomness model II: Zintzo random polynomials |

Definition (T.-C. & Tsigaridas; ISSAC'20)

Let M C N" be a finite set such that 0,eq,...,e, € M. A zintzo random
polynomial supported on M is a random polynomial

F=> foX* €Png

aeM

such that the coefficients §, are independent subgaussian random
variables with the anti-concentration property.

Note: ‘zintzo, from Basque, means honest, upright, righteous.

Observation: No scaling in the coefficients, as it happens with dobro
random polynomials (Cucker, Erglir & T-C.; ISSAC19)
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Randomness model II: Zintzo random polynomials Il

For f a zintzo random polynomial, we define:

1. the subgaussian constant of § which is given by

K == ZQGM Ky (47)

where K, is the subgaussian constant of f,, and

2. the anti-concentration constants of f which is given by

pj = n+w/7p0pe1 T Deys (4.2)

where pg is the anti-concentration constant of §, and for each i,
pe, 1S the anti-concentration constant of f,,.

K;ps will control the complexity estimates



Randomness model II: Zintzo random polynomials Il

Let M C N" be such that it contains 0, ey, ..., e,. These are two
important cases of zintzo random polynomials:

G A Gaussian polynomial supported on M is a zintzo random
polynomial § supported on M, the coefficients of which are i.i.d.
Gaussian random variables.

In this case, p; = 1/v2m and K; < |M|.

U A uniform random polynomial supported on M is a zintzo
random polynomial § supported on M, the coefficients of which
are i.i.d. uniform random variables on [—1,1].

In this case, p; = 1/2 and K; < [M|.
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Randomness model lll: Smoothed case

Proposition (T.-C. & Tsigaridas; ISSAC'20)

Let § be a zintzo random polynomial supported on M, f € Pp 4 a
polynomial supported on M, and o > 0. Then,

fo :=f+ ollfll-f

is a zintzo random polynomial supported on M such that

K, < [Ifll(1 4 oKs) and ps, < ps/(a|fll)-

In particular,
Kfapfg = (Kf + 1/0’)@;.

l.e., the smoothed case is included in our average case!



Probabilistic bound

Theorem (T.-C. & Tsigaridas; ISSAC'20)

Let § € P, 4 a zintzo random polynomial supported on M. Then for all
t>e

n+1

Inz ¢t
B(C(f,x) 2 t) < v/nd"|M| (8K;pp)™" -

Corollary (T.-C. & Tsigaridas; ISSAC'20)

Let § € P, 4 be a zintzo random polynomial supported on M. Then, for
all t > 2e,

01
Tt

P(C(T) > 1) < 1 VG M| (61Kipp) ™




Application 2:
Plantinga-Vegter algorithm




The complexity estimate

We had...

Theorem (Cucker, Ergiir & T.-C.; ISSAC'19, 2020+)
Let § € P, 4 be a dobro random polynomial with parameters K and p.
The average number of boxes of the final subdivision of

Plantinga-Vegter algorithm on input § is at most

n41

anT 215/’] log n+12(l<p)n+1

where N := dim P, 4.
We get...

Theorem (T.-C. & Tsigaridas; ISSAC'20, 2020+)
Let § € P, 4 be a zintzo random polynomial supported on M. The
average number of boxes of the final subdivision of the

Plantinga-Vegter algorithm on input f is at most

n+1
md || (4 +TKspr)
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An specific bound

Corollary (T.-C. & Tsigaridas; ISSAC'20, 2020+)
Let § € P, 4 be a random polynomial supported on M. The average

number of boxes of the final subdivision of Plantinga-Vegter
algorithm on input § is at most

n+1
n’ (Zx/n + 1) d*"|m|"+2

if f is Gaussian or uniform.
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Bere arretagatik eskerrik asko!
EuxaploTw yla Tnv mpoooxn oag!

Galderak?
Kapia epwtnon?
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