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The long-term goal



Grid and subdivision methods: What are they for?

Grid methods:

• Feasibility of real polynomial systems (Cucker & Smale; 1999)
• Approximating and counting real zeros (Cucker, Krick, Malajovich
& Wschebor; 2008, 2009, 2012)

• Homology of real algebraic sets (Cucker, Krick & Shub; 2012)
• Homology of semialgebraic sets (Bürgisser, Cucker & Lairez;
2018) (Bürgisser, Cucker & T.-C.; ISSAC’19, 2020+)

Subdivision methods:

• Root isolation of univariate polynomials (Pan, Davenport, Yap,
Sagraloff, Mehlhorn, Rouillier, Mourrain, Yakoubsohn…) Too many
to write them all!

• Root isolation of polynomial systems (Dedieu & Yakoubsohn;
1991) (Mourrain& Pavone; 2009) (Mantzaflaris, Mourrain &
Tsigaridas; 2011)

• PL approximation of curves and surfaces (Plantinga & Vegter;
2004) (Galehouse; 2009) (Burr, Gao & Tsigaridas; ISSAC’17) 2



Grid and subdivision methods: What is their complexity?

Techniques for controlling complexity:

• Root separation bounds (Davenport, Mahler & Mignotte) (Emiris,
Mourrain & Tsigaridas; ISSAC’10)→ Bit-complexity bounds

• Variety separation bounds (D’Andrea, Krick & Sombra; 2013)
(Burr, Gao & Tsigaridas; ISSAC’17)→ Bit-complexity bounds

• Continuous amortization (Burr, Krahmer & Yap; 2009) (Burr; 2016)
+ Condition-based complexity + Probabilistic analysis (Cucker,
Ergür & T.-C.; ISSAC’19, 2020+)→ Average and smoothed
complexity bounds
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Condition-based complexity

Average and smoothed complexity bounds!

Main issue:
Condition numbers are designed for the sphere,

but the algorithms work in the cube!

Example:
Covering the cube efficiently is easy,
but covering the sphere is not so easy.
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Condition numbers for the cube?
That is our objective!

5



The plan

Geometry on the sphere = Euclidean norm ‖x‖ :=
√∑

i |xi|2
Geometry on the cube = ∞-norm ‖x‖∞ := maxi |xi|

Goal:

Geometry on the sphere → Geometry on the cube
Euclidean norm → ∞-norm

Warning: The∞-norm does not come from an inner product!

Hopes:

• Better complexity estimates
• Faster algorithms
• Better understanding of subdivision methods

Antecedent exploring other norms: (Cucker, Ergür & T.-C.; SIAM AG’19)
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Results of the accepted paper

• Condition theory for hypersurfaces in the cube
• Gaussian polynomials
• Polynomials with restricted support (up to assumptions)

We showcase our results with:

• Separation bounds for roots of univariate polynomials in (0, 1)
• Plantinga-Vegter algorithm
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Polynomial inequalities
and condition



Idea

Norm for polynomials control evaluations, variations…
l

Condition-based complexity theory

Our choice:

‖f‖1 :=
∑
α

|fα|

the 1-norm for polynomials

Why?: ‖f‖1 behaves live the dual of ‖x‖∞
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Polynomial inequalities

f ∈ Pn,d := {g ∈ R[X1, . . . , Xn] | deg g ≤ d}, x, y ∈ In := [−1, 1]n, v ∈ Rn

• Control of the evaluation
|f(x)| ≤ ‖f‖1

• Control of the derivative I
‖〈∇f, v〉‖1 ≤ d‖f‖1‖v‖∞

• Control of the derivative II
‖∇xf‖1 ≤ d‖f‖1

• Lipschitz properties for f and its derivatives
|f(x)− f(y)| ≤ d‖f‖1‖x− y‖∞

‖∇xf−∇yf‖1 ≤ d(d− 1)‖f‖1‖x− y‖∞
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Local condition number

Definition (T.-C., Tsigaridas; ISSAC’20)

Let f ∈ Pn,d and x ∈ In, the local condition number of f at x is the
quantity

C(f, x) := ‖f‖1
max

{
|f(x)|, 1d‖∇xf‖1

} .
Important observation: C(f, x) = ∞ iff x is a singular zero of f
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Properties of the local condition number

• Regularity inequality
either |f(x)|/‖f‖1 ≥ 1/C(f, x) or ‖∇xf‖1/(d‖f‖1) ≥ 1/C(f, x).

• 1st Lipschitz property
f 7→ ‖f‖1/C(f, x) is 1-Lipschitz

• 2nd Lipschitz property
In 3 x 7→ 1/C(f, x) is d-Lipschitz

• Condition Number Theorem

‖f‖1/dist1(f,Σx) ≤ C(f, x) ≤ 2d ‖f‖1/dist1(f,Σx)

where Σx := {g ∈ Pn,d | x is a singular zero of f}
• Higher Derivative Estimate. If C(f, x)|f(x)|/‖f‖1 < 1, then

γ(f, x) ≤ 1
2 (d− 1)

√
nC(f, x).

where γ(f, x) is Smale’s γ

All we need for condition-based complexity analyses!
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Application 1:
Separation of roots



Separation of roots

Recall...
∆α(f) := dist(α, f−1(0) \ {α})

Theorem (T.-C. & Tsigaridas; ISSAC’20)
Let f ∈ P1,d. Then, for every complex α ∈ f−1(0) such that
dist(α, I) ≤ 1/(3(d− 1)C(f)),

∆α(f) ≥
1

16(d− 1)C(f)

where
C(f) := sup

x∈I
C(f, x).

I.e., the condition number controls the separation of the roots
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Probabilistic results



Randomness model I: Two properties

(SG) We call a random variable x subgaussian, if there exist a K > 0
such that for all t ≥ K,

P(|x| > t) ≤ 2 exp(−t2/K2).

The smallest such K is the subgaussian constant of x.
(AC) A random variable x has the anti-concentration property, if there

exists a ρ > 0, such that for all ε > 0,

max{P (|x− u| ≤ ε) | u ∈ R} ≤ 2ρε.

The smallest such ρ is the anti-concentration constant of x.
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Randomness model II: Zintzo random polynomials I

Definition (T.-C. & Tsigaridas; ISSAC’20)

Let M ⊆ Nn be a finite set such that 0, e1, . . . , en ∈ M. A zintzo random
polynomial supported on M is a random polynomial

f =
∑
α∈M

fαXα ∈ Pn,d

such that the coefficients fα are independent subgaussian random
variables with the anti-concentration property.

Note: ‘zintzo’, from Basque, means honest, upright, righteous.

Observation: No scaling in the coefficients, as it happens with dobro
random polynomials (Cucker, Ergür & T.-C.; ISSAC’19)

14



Randomness model II: Zintzo random polynomials II

For f a zintzo random polynomial, we define:

1. the subgaussian constant of f which is given by

Kf :=
∑

α∈M
Kα, (4.1)

where Kα is the subgaussian constant of fα, and
2. the anti-concentration constants of f which is given by

ρf := n+1
√
ρ0ρe1 · · · ρen , (4.2)

where ρ0 is the anti-concentration constant of f0 and for each i,
ρei is the anti-concentration constant of fei .

Kfρf will control the complexity estimates
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Randomness model II: Zintzo random polynomials III

Let M ⊆ Nn be such that it contains 0, e1, . . . , en. These are two
important cases of zintzo random polynomials:

G A Gaussian polynomial supported on M is a zintzo random
polynomial f supported on M, the coefficients of which are i.i.d.
Gaussian random variables.
In this case, ρf = 1/

√
2π and Kf ≤ |M|.

U A uniform random polynomial supported on M is a zintzo
random polynomial f supported on M, the coefficients of which
are i.i.d. uniform random variables on [−1, 1].
In this case, ρf = 1/2 and Kf ≤ |M|.
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Randomness model III: Smoothed case

Proposition (T.-C. & Tsigaridas; ISSAC’20)

Let f be a zintzo random polynomial supported on M, f ∈ Pn,d a
polynomial supported on M, and σ > 0. Then,

fσ := f+ σ‖f‖1f

is a zintzo random polynomial supported on M such that

Kfσ ≤ ‖f‖1(1+ σKf) and ρfσ ≤ ρf/(σ‖f‖1).

In particular,
Kfσρfσ = (Kf + 1/σ)ρf.

I.e., the smoothed case is included in our average case!
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Probabilistic bound

Theorem (T.-C. & Tsigaridas; ISSAC’20)

Let f ∈ Pn,d a zintzo random polynomial supported on M. Then for all
t ≥ e,

P(C(f, x) ≥ t) ≤
√
ndn|M| (8Kfρf)n+1

ln
n+1
2 t

tn+1 .

Corollary (T.-C. & Tsigaridas; ISSAC’20)

Let f ∈ Pn,d be a zintzo random polynomial supported on M. Then, for
all t > 2e,

P(C(f) ≥ t) ≤ 1
4
√
nd2n|M| (64Kfρf)n+1

ln
n+1
2 t
t .

18



Application 2:
Plantinga-Vegter algorithm



The complexity estimate

We had…

Theorem (Cucker, Ergür & T.-C.; ISSAC’19, 2020+)
Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ.
The average number of boxes of the final subdivision of
Plantinga-Vegter algorithm on input f is at most

dnN n+1
2 215n log n+12(Kρ)n+1

where N := dimPn,d.

We get…

Theorem (T.-C. & Tsigaridas; ISSAC’20, 2020+)
Let f ∈ Pn,d be a zintzo random polynomial supported on M. The
average number of boxes of the final subdivision of the
Plantinga-Vegter algorithm on input f is at most

n2d2n|M|
(
4
√
n+ 1 Kfρf

)n+1
.
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An specific bound

Corollary (T.-C. & Tsigaridas; ISSAC’20, 2020+)
Let f ∈ Pn,d be a random polynomial supported on M. The average
number of boxes of the final subdivision of Plantinga-Vegter
algorithm on input f is at most

n2
(
2
√
n+ 1

)n+1
d2n|M|n+2

if f is Gaussian or uniform.
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Bere arretagatik eskerrik asko!
Ευχαριστω για την προσοχη σας!

Galderak?
Καμιά ερώτηση?
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