

The Idea

Numerical linear algebra:

I various matrix norms

I the selection of a norm in algorithms’ design/analysis is often done
to minimize complexity

Numerical polynomial algebra:

I a single norm (Weyl, 1932) dominates the literature

I it is easy to compute and unitarily/orthogonally invariant

A Tale of Two Norms

The Weyl norm

f 2 HF
d [1] f =

X

|↵|=d

f↵X
↵

where ↵ = (↵0, . . . ,↵n) 2 Nn+1 and |↵| = ↵0 + · · ·+ ↵n.

kf kW :=

vuut
X

|↵|=d

✓
d

↵

◆�1

|f↵|2

where
�d
↵

�
is the multinomial coe�cient d!

↵0!...↵n!
.

For f = (f1, . . . , fq) 2 Hd[q] the Weyl norm extends as

kf kW :=
q

kf1k2W + · · ·+ kfqk2W

The 1 norm

kf kF
1

:=

8
<

:

max
x2Sn

kf (x)k1 = max
x2Sn

max
i

|fi (x)| if F = R

max
z2Pn

kf (z)k
1

= max
z2Pn

max
i

|fi (z)| if F = C

Why bother to choose kf kF1 over kf kW ?

Why bother?

Reason 1:

There is a huge gain for random data!

In the worst-case,
kf kF

1
 kf kW

In the random case,

Theorem

For random f 2 HF
d [q],

E
f

kfkF
1

kfkW
 O

 r
n ln(eD)

N

!
⇠ O

 r
ln(eD)

Dn

!
(for large D)

Huge gain for ‘typical’ input

Why bother?

Reason 2:

The 1-norm can still control the derivatives!

Theorem

Let F 2 {R,C}, f 2 HF
d [1], x 2 Fn+1 and v 2 Fn+1, then

��Dx f v
��  d

1
2 kf kW kxkd�1

2 kvk2.

Theorem (Kellogg’s Inequality)

Let F 2 {R,C}, f 2 HF
d [1], x 2 Fn+1 and v 2 Fn+1, then

��Dx f v
��  dkf kF

1
kxkd�1

2 kvk2.

Similar complexity analyses. . .

Why bother?

Reason 2:

The 1-norm can still control the derivatives!

Theorem

Let F 2 {R,C}, f 2 HF
d [1], x 2 Fn+1 and v 2 Fn+1, then

��Dx f v
��  d

1
2 kf kW kxkd�1

2 kvk2.

Theorem (Kellogg’s Inequality)

Let F 2 {R,C}, f 2 HF
d [1], x 2 Fn+1 and v 2 Fn+1, then

��Dx f v
��  dkf kF

1
kxkd�1

2 kvk2.

Similar complexity analyses. . .

. . . with similar condition numbers

Complex setting:

µnorm(f , ⇣) := kf kW
���D⇣ f

†�1/2
���
2,2

.

#

M(f , ⇣) =
p
qkf kC

1

��D⇣ f
†�
��
2,2

.

Real setting:

(f) := sup
x2Sn

kf kWq
kf (x)k22 +

��Dx f †�1/2
���2

2,2

.

#

K(f) := sup
x2Sn

p
qkf kR

1

max
n
kf (x)k, kDx f †�k�1

2,2

o .

. . . with similar condition numbers

Complex setting:

µnorm(f , ⇣) := kf kW
���D⇣ f

†�1/2
���
2,2

.

#

M(f , ⇣) =
p
qkf kC

1

��D⇣ f
†�
��
2,2

.

Real setting:

(f) := sup
x2Sn

kf kWq
kf (x)k22 +

��Dx f †�1/2
���2

2,2

.

#

K(f) := sup
x2Sn

p
qkf kR

1

max
n
kf (x)k, kDx f †�k�1

2,2

o .

Any problems?

k k1 is not cheap to estimate

Proposition

Given (f , k) 2 HF
d [q]⇥ N we can compute T such that

(1� 2�k)T  kf k1  T

with cost
O
⇣
2n log nDn2

(k+1)n
2 N

⌘
.

Gains are big enough to compensate for this

THREE Applications

1st Application:
Computing the Betti numbers

of (Semi-)Algebraic Sets

State of the art

Theorem
There is a numerical algorithm Betti that, given f 2 Hd[q], returns the
Betti numbers of its zero set Z (f) ⇢ Sn. The cost of Betti on input f
is bounded as

cost(f)  2O(n2 log n)DO(n2)(f)O(n2).

Furthermore, it satisfies

cost(p)  qO(n)(nD)O(n3)

with probability at least 1� (nqD)�n.

The result holds for a class of distributions extending the Gaussian

Outside a set of vanishingly small measure
this yields an exponential acceleration over all previous algorithms

The Algorithm

The Algorithm

(f) controls the mesh of the grid!

The Algorithm

(f) is in the criterion to determine which points are near!

The Algorithm

(f) determines how big we should take the balls!
(Through the Niyogi-Smale-Weinberger Theorem

and a bound on the reach!)

The Algorithm

Union of Balls

#
some TDA

(e.g. Nerve Lemma)

#
Betti numbers of zero set

(Even torsion coe�cients!)

Replacing k kW with k k1

(1) The same scheme can be applied using K instead of 

(2)
cost(Betti1, f)

cost(BettiW , f)

✓
K(f)

(f)

◆10n

(3) For random f

cost(Betti1, f)

cost(BettiW , f)


Cn
p
qD ln(eD)p
N � 20n

!10n

with probability at least 1� 1
N

For fixed n and large D, the ratio in the right-hand side is of the order of

C
p
ln(eD)

D
n�1
2

!10n

.

2nd Application:
The Plantinga-Vegter Algorithm

• Given a real polynomial f , the PV algorithm meshes the real zero set.
• Mostly used for two and three variables by computer graphics

community, reported to be e�cient, and quite popular

• Concretely speaking:
Given a polynomial f 2 R[X ,Y] (or f 2 R[X ,Y ,Z]) with degree d it
computes an isotopic piecewise linear approximation of the zero set of f
within a given square in R2 (cube in R3, respectively).

• Ambiguous for precision control

• Worst-case complexity analysis by Burr, Gao, Tsigaridas came after
14 years and predicted exponential running time

• We use condition numbers for precision control and
beyond-worst-case complexity analysis

Smoothed Analysis of Algorithms
• Perturb a deterministic input g with a random input h:

g + �kgkh

where � 2 (0,1) controls the “variance”

• For the algorithm of interest, we bound the quantity

sup
g

Eh cost(g + �kgkh)

I � = 0 gives the worst-case complexity analysis

I � ! 1 gives the average case complexity analysis

I � 2 (0,1) gives the smoothed complexity analysis

• Smoothed analysis explains run-time in practice!

• Note that we need to choose a probability distribution for h
In our case, h is a dobro random polynomial, i.e., subgaussian coe�cients
with bounded continuous density

Worst-case case complexity of the PV algorithm

2
O(dn)

Smoothed complexity of the PV algorithm

With the Weyl norm,

dO(n2)

With the 1-norm,

(d log d)O(n)

Smoothed complexity of the PV algorithm for low dimensions

n = 2 n = 3

PVW O
�
d8
�

O
�
d13
�

PV1 O
�
d7 log1.5(d)

�
O
�
d10 log2(d)

�

3rd Application:
Systems

of
complex quadratic equations

Pn

HC
d [n]fg

⇣0
⇣1

f = q1g = q0

qt := tf + (1� t)g

Pn

HC
d [n]

fg

⇣0
⇣1

f = q1g = q0

qt := tf + (1� t)g

Pn

HC
d [n]

qi qi+1

⇣i

⇣i+1

zi

zi+1

dS(qi , qi+1) :=
0.008535284

distS(f , g)D3/2µnorm(qi , zi)2
zi+1 := Nqi+1(zi).

Pn

HC
d [n]

qi qi+1

⇣i

⇣i+1

zi

zi+1

dS(qi , qi+1) :=
0.03

kf�gkC
1

kqikC
1

DM(qi , zi)2
zi+1 := Nqi+1(zi).

expected # steps cost of step Total cost

W O
�
nD3/2N

�
O(N) O

�
nD3/2N2

�

1 O(n3D log(eD)) Large Large

The case of quadratic equations: D = 2 (N = O(n3))

expected # steps cost of step Total cost

W O
�
n4
�

O(n3) O
�
n7
�

1 O(n3) O(n1.5+!) O(n4.5+!)

Note that ! < 2.375!

Conclusion
As in the case of numerical linear algebra,

a careful choice of norms can improve algorithm e�ciency

¡Muchas Gracias!

Teşekkürler!

Eskerrik asko!

