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The ldea



Numerical linear algebra:
» various matrix norms

> the selection of a norm in algorithms’ design/analysis is often done
to minimize complexity

Numerical polynomial algebra:
» a single norm (Weyl, 1932) dominates the literature
> it is easy to compute and unitarily/orthogonally invariant



A Tale of Two Norms



The Weyl norm
f e 1] f=> fuX®

|a|=d
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where (¢) is the multinomial coefficient —4—.
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For f = (f,...,fq) € Ha[q] the Weyl norm extends as

1Fllw = IRy + -+ I Fall3y



The co norm
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Why bother to choose |||, over ||f]|\?



Why bother?

Reason 1:
There is a huge gain for random data!

In the worst-case,
115 < [IFllw

In the random case,

For random § € H%[q],

il =0 ((7) o ({752 oo

Huge gain for ‘typical’ input



Why bother?

Reason 2:

The co-norm can still control the derivatives!

Let F € {R,C}, f € HE[1], x € F*™! and v € F™1, then

_ . )
IDufv| < d2 || Flwlixg vl

Theorem (Kellogg's Inequality)

Let F € {R,C}, f € HE[1], x € F** and v € F™*1, then

IDf v| < dlIf IS lIx3 " Ivila-
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Similar complexity analyses. ..



... with similar condition numbers

Complex setting:

porm (£, Q) = | Fllw||DerTat?| .

1
M(f,¢) = Vallf|% [[Defi A, -



.. .with similar condition numbers

Complex setting:

o (£, ) = Fllw [DeFral?| .

1
M(f,¢) = Vallf|% [[Defi A, -

Real setting:

k(f) := sup [fllw

< JIFI3 + [ Duftav2|, ]

I

f R
K(f) := sup vl loe 5
<< max {IF(), D<Al }




Any problems?

| ||sc is not cheap to estimate

Proposition
Given (f, k) € H[q] x N we can compute T such that
1-27)T <|fllo<T

with cost

O (275702 ).

Gains are big enough to compensate for this



THREE Applications



1st Application:
Computing the Betti numbers
of (Semi-)Algebraic Sets



State of the art

Theorem

There is a numerical algorithm BETTI that, given f € Hq|q], returns the
Betti numbers of its zero set Z(f) C S". The cost of BETTI on input f
is bounded as

cost(f) < 2007108 pOU) o (£)O(),
Furthermore, it satisfies

cost(p) < g% (nD)°()

with probability at least 1 — (ngD)™".

The result holds for a class of distributions extending the Gaussian

Outside a set of vanishingly small measure
this yields an exponential acceleration over all previous algorithms



The Algorithm



The Algorithm

k(f) controls the mesh of the grid!



The Algorithm

k(f) is in the criterion to determine which points are near!



The Algorithm

k(f) determines how big we should take the balls!
(Through the Niyogi-Smale-Weinberger Theorem
and a bound on the reach!)



The Algorithm

]

some TDA
(e.g. Nerve Lemma)

7

Betti numbers of zero set

(Even torsion coefficients!)



Replacing || ||w with || ||«

(1) The same scheme can be applied using K instead of

cost(BETTI, ) _ (K(f) 1o
cost(BETTIW, f) = \ &(f)

(2)

(3) For random f

10n
cost(BETTI, f) < Cn\/gDIn(eD)
cost(BETTIw,f) — V/N —20n

with probability at least 1 — %

For fixed n and large D, the ratio in the right-hand side is of the order of

(C«/In(eD)) o

D=



2nd Application:
The Plantinga-Vegter Algorithm



e Given a real polynomial f, the PV algorithm meshes the real zero set.
e Mostly used for two and three variables by computer graphics

community, reported to be efficient, and quite popular

e Concretely speaking:

Given a polynomial f € R[X, Y] (or f € R[X, Y, Z]) with degree d it
computes an isotopic piecewise linear approximation of the zero set of £
within a given square in R? (cube in R3, respectively).

e Ambiguous for precision control

e Worst-case complexity analysis by Burr, Gao, Tsigaridas came after
14 years and predicted exponential running time

e \We use condition numbers for precision control and
beyond-worst-case complexity analysis


















Smoothed Analysis of Algorithms
e Perturb a deterministic input g with a random input b:

g+ollglb

where o € (0, 00) controls the “variance”

e For the algorithm of interest, we bound the quantity

supEy cost(g + ollg|[h)
g

» o = 0 gives the worst-case complexity analysis
> o — 0o gives the average case complexity analysis
» o € (0,00) gives the smoothed complexity analysis
e Smoothed analysis explains run-time in practice!
e Note that we need to choose a probability distribution for h

In our case, b is a dobro random polynomial, i.e., subgaussian coefficients
with bounded continuous density



Worst-case case complexity of the PV algorithm

20(d")

Smoothed complexity of the PV algorithm

With the Weyl norm,

dO(nz)

With the oco-norm,

(d log d)°")

Smoothed complexity of the PV algorithm for low dimensions
[ [ =3 [ =3 |

PV 0 (&) 0 (d9)

PV, [ O(d"log">(d)) | O (d™log*(d))




3rd Application:
Systems
of

complex quadratic equations
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0.008535284
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|

| EXPECTED # STEPS | COST OF STEP | TOTAL COST |

O (10°°N)

ON)

O (iD°°\?)

W
00

O(n*Dlog(eD))

Large

Large

The case of quadratic equations: D =2 (N = O(n?))

|

| EXPECTED # STEPS | COST OF STEP | TOTAL COST |

O(n3)

O (n")

W
00

O(n1.5+w)

O(n4.5+w)

Note that w < 2.375!



Conclusion
As in the case of numerical linear algebra,

a careful choice of norms can improve algorithm efficiency



iMuchas Gracias!

Tesekkurler!

Eskerrik asko!



