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ARTICLE INFO ABSTRACT

‘We describe an algorithm to count the number of distinct real

zeros of a polynomial (square) system f. The algorithm performs
odot(nlh(l 1)) iterations (grid refinements) where nis the number
of polynomials (as well as the dimension of the ambient space),
D is a bound on the polynomials’ degree, and x{f) is a condition
number for the system. Each tteration uses an exponential number
of operations. The algorithm uses finite-precision arithmetic and a
major feature of our results is a bound for the precision required to
ensure that the returned output is correct which is polynomial in n
and D and logarithmic in (/). The algorithm parallelizes well inthe
sense that each iteration can be computed in parallel polynomial
time in . log D and log(xif)).
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In recent years considerable attention has been paid to the complexity of counting problems
over the reals. The counting complexity class #P, was introduced [20] and completeness results for
#P, were established [3] for natural geometric problems notably, for the computation of the Euler
characteristic of semialgebraic sets. As one could expect, the "basic™ #Ps-complete problem consists
of counting the real zeros of a system of polynomial equations.
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A numerical algorithm for zero counting.
II: Distance to ill-posedness and
smoothed analysis

Felipe Cucker, Teresa Krick, Gregorio Malajovich and
Mario Wschebor

To Steve, on his 80th birthday, with admination and esteem

Abstract. We show a Condition Number Theorem for the condition mumber of
zero counting for real polynomial systems. That is, we show that this condition
number equals the inverse of the normalized distance to the set of ill-posed
systems (ie., those having multiple real zeros). As a consequence, a smoothed
analysis of this condition number follows.
Mathematics Subject Classification (2000). 65Y20, 65H10.

Keywords, Polynomial systems, zero counting, condition numbers, smoothed
analysis.

1. Introduction

This paper continues the work in (8], where we described a numerical algorithm
to count the number of zeres in n-dimensional real projective space of a system of
n real homogeneous polynomials. The algorithm works with finite precision and
both its complexity and the precision required to ensure correctness are bounded
in terms of n, the maximum D of the polynomials’ degrees, and a condition num-
ber x({f).

In this paper we replace «(f)—which was originally defined using the com-
wtmnllyﬁlmdlymﬁmwm—hyavdmn(f)(dgﬁudm&um!bm)
which uses instead Euclidean norms. This difference is of little consequence in
complexity estimates since one has (cf. Propasition 3.3 below)

"‘%1 < k(f) < VaRE(f). [}

Advances in Applaed Mathematics 48 (2012} 215-248

A numerical algorithm for zero counting. III: Randomization
and condition

Felipe Cucker®*!, Teresa Krick 2, Gregorio Malajovich <3, Mario Wschebord

:mqmmmxyaymmmm
Departamento de Matemdtica, 1dad de Buenos Aires & IMAS, COMCET,

* Departamento de Matemrica Aphcada, Universidode Federal do Rio de Janeirs, Brazil
4 Centro de Matemtica, Universidad de fa Repiiblica, Uruguay

ARTICLE INFO ABSTRACT

Article history: In a recent paper (Cucker et al., 2008 [8]) we analyzed a numerical
Recewed 8 July 2010 algorithm for computing the number of real zeros of a polynomial
Accepted 1 July 2011 system. The analysts relied on a condition number x (/) for the
forsilable online 30 August 2011 mput system [ In this paper we 100K at & (f) as a random variable
we "  derved from tmposing a probability measure on the space of
12v05 polynomial systems and give bounds for both the tall P(x{f) = a)
60GED and the expected value E(logx(f)).

@© 2011 Elsevier Inc. All nghts reserved.

* Carresponding author.
E-mail addresses: macucker@cnyu edu.hk (F Cucker), knck@dmuba ar (T Knck), gregorio®ufribr (C. Malaovch)
wichebor®emat. edu uy {M. Wschebor).
' Partialty supported by GRE grant City University 100810,
2 partialty supported by grants ANPCYT 13571)05, UBACYT X113/2008-2010 and CONICET PIP/2010-2012.
* Partially supported by CNPq grants 47003120077, 303565/2007-1, and by FAPER)

D196-8858($ - see front matter £ 2011 Elsevier Inc. All rights reserved.
dot:10.1015(; aam 201107001




The Oricival IRILoGY
L\/ Cuck{/?_, kvio_k, Ma djoV'1CL,WSClAQLbV>

Journal of Complexity 24 (2008) 582605 Advances in Appled Mathematics 48 (2012) 215-248

point. theoey appl. 6 (2009), "5-'-‘9‘

6 o0 Bokbbn Verlag, Bosel/Switeerland
16617738 /020285-10, published ontine 14.11,2009 .qundd‘Fludm
DO1 lo.lmrl/mru-am-mn-a and Applications

A numerical algorithm for zero counting, I: Complexity A numerical algorithm for zero counting. A numerical algorithm for zero
and accuracy II: Distance to ill-posedness and and condition
Felipe Cucker**, Teresa Krick", Gregorio Malajovich ¢, Mario Wschebor® smoothed analysis Felipe Cucker®*!, Teres

Nt S Mathefieds, Oy UNierilty i Hong Tosg Yeng Felipe Cucker, Teresa Krick, Gregorio Malajovich and
'Departamento de Matemdtica, Univ. de Buenos Aires, Argenting A

€ CONICET, Argentina

@ Depta de Matemdtica Aplicada, Univ. Federal da Rio de Janeiro, Brazil

# Centro de Matemtica, Universidad de fo Repiibiica, Uruguzy

ABSTRACT

ARTICLE INFO o pe to th o tick d lnamllpap«(mmntlzm[ll)min
Lo, multip as). bonsequet ¥ algorithm for computing the number of real lym:
icke histary: ‘We describe an algorithm to count the number of distinct real is cond 2 e system. The analysis relied on a condition nu; /) for
i zesos of a polynomial (square) system f. The algorithm performs ification . 65V fsailable a0 ngsit 2011 -
epeed 14 . ©@(log(nDx(f))) iterations grid refinements) where s the number 5 \ 4 e : s
of polynomialsgas well as the dimension e > R 12v05 s Pliif

This paper continues the work in (8], where we described a numerical algorithm ‘. o
time in r, log D and log(x(f)). the number of zercs in n-dimensional real projective space of & system of sce fo
© polynomisls. The slgorithm works with finite precision and

n has been paid to the complexity of counting problems
over the reals. The counting complexity class #P, was introduced [20] and completeness results for
#P, were established [3] for natural geometric problems notably, for the computation of the E

characteristic of semialgebraic sets. As one could expect, the "basic™ #] mplete pro
of counting the real zeros of a system of polynomial equations.
: macucker@oayu edu.hk (F Cocker), knck@dm ubaar (T. Knck), gregorio®ulrybr (. Malgowich)
Tmn g vt wln'mr'uvm.zduw, gc\:‘mt)
artially supported grant City University 100810
e "";‘:‘L o b {F. Cocoer) ke Rjlor (G Malajovich). 2 partially supported by grants ANPCYT 33671105, UBACYT X113/2008.2010 and CONICET PIM2010-2012.
hepoclon oy (M. Wachelor). * partially supported by CNPq grants 470031/2007.7, J03565/2007-1, and by FAPER].

D156.8858($ - see front matter £ 2011 Elsevier Inc. All rights reserved.
dos:10.10146(3.aam 201107001

0885.064X/S - see front matter © 2008 Elsevier Inc. All rights
doi: 10.1016/) jco 2008.03.001




—T—L\e. CKM\'\/ o\liowﬂnw

AAIER #Zp (3)

& | Ny

ANuMeRIcALLY
DETERMINISTIC STARLE

WV

IGOOD‘ PROBABILISTIC RUN-TIME

2.
With Wik orobabilily  ruefine(CKMWg< DZ )

jovr & KSs (ﬂvt\“\gc/sw-ofbcaf)

D.‘:: nAAX o!,’



Found Math (2019) 19:131-157

my&%mmmm—olms FOUNDATIONS or
COMPUTATIONAL
MATHEMATICS

e o e iy b e Fovmdin o Compasatind Matwsmatcn

Probabilistic Condition Number Estimates for Real
Polynomial Systems I: A Broader Family
of Distributions

Alperen A. Ergiir! . Grigoris Paouris? -
J. Maurice Rojas®

Received: 8 December 2016/ Revised: 6 June 2017 / Accepted: 30 October 2017 /
Published online: 31 January 2018
© SFoCM 2018

Abstract We consider the sensitivity of real roots of polynomial systems with respect
to perturbations of the coefficients. In particular—for a version of the condition number
defined by Cucker and used later by Cucker, Krick, Malajovich, and Wschebor—we
establish new estimates that allow amuch broader family of measures than
considered earlier. We also generalize further by allowing overdetermined systems. In
Part 11, we study smoothed complexity and how sparsity (in the sense of restricting

Real-solving - Overdetermined - Subgaussian
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SMOOTHED ANALYSIS FOR THE CONDITION NUMBER OF
STRUCTURED REAL POLYNOMIAL SYSTEMS

ALPEREN A. ERGUR, GRIGORIS PAOURIS, AND J. MAURICE ROJAS

AnstTaacr. We consider the sensitivity of real zeros of structured polynomial systems to
perturbations of their coefficients. In particular, we provide explicit estimates for condi-
tion numbers of structured random real polynomial systems, and extend these estimates to
smoothed analysis setting.

1. INTRODUCTION

Efficiently finding real roots of real polynomial systems is one of the main objectives of
computational algebraic geometry. There are numerous algorithms for this task, but the
core steps of these algorithms are easy to outline: They are some combination of algebraic
manipulation, a discrete/polyhedral computation, and a numerical iterative scheme.

From a computational complexity point of view, the cost of numerical iteration is much
less transparent than the cost of algebraic or discrete computation. This paper constitutes a
step toward understanding the complexity of numerically solving structured real polynomial
systems. Our main results are Theorems 1.14, 1.16, and 1.18 below, but we will first need
to give some context for our results.

1.1. How to control accuracy and complexity of numerics in real algebraic geom-
etry? In the numerical lincar algebra tradition, going back to von Neumann and Turing,
condition numbers play a central role in the control of accuracy and speed of algorithms (see,
e.g., [3. 6] for further background). Shub and Smale initiated the use of condition numbers
for polynomial system solving over the field of complex numbers [36, 37]. Subsequently,
condition numbers played a central role in the solution of Smale’s 17th problem [2, 5, 25].

The numerics of solving polynomial systems over the real numbers is more subtle than
complex case: small perturbations can cause the solution set to change cardinality. One can
even go from having no real zero to many real zeros by an arbitrarily small change in the
coefficients. This behaviour doesn’t appear over the complex numbers as one has theorems
(such as the Fundemantel Theorem of Algebra) proving that root counts are “generically”
constant. Luckily, a condition number theory that captures these subtleties was developed
by Cucker [11]. Now we set up the notation and present Cucker’s definition.

Definition 1.1 (Bombieri-Weyl Norm). We set 2 := 2% ... 25" where

and let P = (p1,....pn—1) be a system of homogenous polynomials with degree pattern
dy,...,dny. Let ¢ denote the coefficient of = in a p;. We define the Weyl-Bombieri
norms of p; and P to be, respectively,

||Pi||w== g
aytrrtans=ds

AE. was partially supported by Einstein Foundation, Berlin and by the Pravesh Kothari of CMU. G.P.
was partially supported by Simons Foundation Collaboration grant 527498 and NSF grant DMS-1812240.
J.M.R. was partially supported by NSF grants CCF-1408020, DMS-1460766, and CCF-1900881.
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