Condition Numbers for the Cube.
I: Univariate Polynomials and Hypersurfaces

Josué TONELLI-CUETO (Inria Paris & IMJ-PRG)
together with
Elias TSIGARIDAS (Inria Paris & IMJ-PRG)

June 30, 2020
&-=5> OURAGAN
= Seminar

Slides at https://tonellicueto.xyz/pdf/OURAGAN30062020_slides.pdf


https://tonellicueto.xyz/pdf/OURAGAN30062020_slides.pdf

This presentation is about the accepted paper
Condition Numbers for the Cube.
I: Univariate Polynomials and Hypersurfaces
authored by

- Elias Tsigaridas (Inria Paris & IMJ-PRG), and
- Josué Tonelli-Cueto (Inria Paris & IMJ-PRG)

The authors were partially supported by
- ANR JCJC GALOP (ANR-17-CE40-0009),
- the PGMO grant ALMA, and
- the PHC GRAPE.



Complexity
of numerical algorithms



Numerical algorithms

What do characterize numerical algorithms?

- Inexact input data

- Approximate operations with numbers
Which problems arise when working with numerical algorithms?

- Behaviour is not uniform

- Some inputs (ill-posed) are intractable
Why do we want numerical algorithms?

- More stable, i.e., robust with respect errors
- They can be faster in practice



Complexity: Condition numbers |

ALL INPUTS ARE EQUAL
BUT SOME INPUTS ARE MORE EQUAL
THAN OTHERS

Condition number

- Measure of the numerical sensitivity
- The bigger the worse!
- It depends on the metric!
- Controls the complexity. This is what happens in:
- Linear algebra
- Linear programming and optimization
- Algebraic geometry



Complexity: Condition numbers II

Details in the BooR!

Grundlehren der mathematischen Wissenschaften 349
A Series of Comprehensive Studies in Mathematics

Peter Biirgisser
Felipe Cucker

Condition

The Geometry of Numerical Algorithms

@ Springer

..and some other papers! .



Uniform complexity of numerical algorithms |

Worst-case complexity analysis:
What is the worst running time?

Average complexity analysis:
What is the expectation of the running time on a random
input?

Smoothed complexity analysis: (Spielman, Teng; 2002)
What is the worst running time after perturbing the input with
a random perturbation (with weight o)?

Smoothed lies between worst-case and average complexity

- o0 — 0: We recover worst-case complexity

- o — oo: We recover average analysis



Uniform complexity of numerical algorithms Il

Worst-case complexity analysis:
Infinite for numerical algorithms!

Average complexity analysis: (Goldstein & von Neumann, Demmel,
Smale)
It allows to derive complexity estimates that do not depend
on the condition number

Smoothed complexity analysis:
Explains the success of numerical algorithms in practice



The long-term goal




Better algorithms in real numerical algebraic geometry!

Algorithms are faster and simpler on the cube,
but geometry is easier on the sphere!

Example:
Covering the cube efficiently is easy,
but covering the sphere is not so easy.



Cubes are better for subdivisions!




Geometry on the sphere Euclidean norm ||| :== +/>_; [Xi|?
Geometry on the cube = oco-norm [X|loo := max; |Xi|

Goal:

Geometry on the sphere  —  Geometry on the cube
Euclidean norm  —  oo-norm

Warning: The oo-norm does not come from an inner product!

Hopes:

- Better complexity estimates
- Faster algorithms
- Better understanding of subdivision methods

Antecedent exploring other norms: (Cucker, Ergiir, T.C.; SIAM AG'19)



Our local achievement

- Condition theory for hypersurfaces in the cube
- Gaussian polynomials
- Polynomials with restricted support (up to assumptions)

We showcase our results with:

- Separation bounds for roots of univariate polynomials in (0, 1)
- Plantinga-Vegter algorithm



Let's see some detalils!
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Polynomial inequalities
and condition




Pna : Polynomials of degree < d in the variables Xy, ..., X,
B, : Euclidean ballin R"
" Unit oo-ball ([-1,1]") in R"

=Y ofaX* € Prg, x€R"

: ~1/2
Iflw : Weyl norm, given by \/Z (a,diw) fa
Ifllh : 1-norm, given by Y~ Ifal
f(x) : Evaluation of fat x
Vf : Formal gradient of f, element of P, ,
V.f : Gradient vector of fat x



Idea: Controlling size of evaluation

Proposition
Let f € Png and x € Bn. Then [f(X)| < |Ifllwll(1,X)]|%.

Proof.

= ‘<<<a’dd a)vjszJ | ((wd >//> >’
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= llw, 1+ Y20
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Idea: Controlling size of evaluation

Proposition
Letf e Png x € Bgnandp,qg>1suchthat1/p+1/q =1 Then

FOOL < IAllwo 10, 211G

Proof.

'f(x)':|<<<aadd ) )( ) >>‘
<(Gotio)” )] (o) )

—|f|w.p\n/2 . d_|a| x

- Iflw,pm

= [AAlwpll (1,011
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Idea: Controlling size of evaluation

Taking p =1and g = co...

Proposition
Letf € Ppg x €1 Then [f(x)| < Il

This, by duality, justifies our use of the 1-norm for polynomials when
we use the co-norm for points.
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In a similar way...

f€PraxelveR"

+ Control of the derivative I

KV < dliflhlIvie

- Control of the derivative II:

VIl < diifll

- Lipschitz properties for f and its derivatives



Local condition number

Definition (T.C., Tsigaridas; ISSAC'20)

Let f € P, 4 and x € I", the local condition number of f at x is the

quantity
111l

UX) = 0L SV}

Important observation: C(f, x) = oo iff x is a singular zero of f
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Properties of the local condition number

- Regularity inequality
either [f(x)|/lIfllh = 1/ C(f, x) or [[Vufll1/(dlfll1) = 1/ C(f, x).

- 1st Lipschitz property

= Ifllh/ C(f, x) is 1-Lipschitz
- 2nd Lipschitz property

"> x — 1/ C(f,x) is d-Lipschitz
- Condition Number Theorem

[Iflh/dist1(f, £x) < C(f,x) < 2d [|fl|1/dista(f, X)

where ¥, := {g € P, 4 | x is a singular zero of f}
- Higher Derivative Estimate. If C(f, x)|[f(X)|/|Ifll1 < 1, then

1(7,X) < 5(d = DA,

where ~(f, x) is Smale’s v

All we need for complexity analyses!



Application 1:
Separation of roots




Separation of roots

Recall...

Aq(f) = dist(a, f7'(0) \ {a})

Theorem (T.C., Tsigaridas; ISSAC'20)
Let f € Py 4. Then, for every complex o € f~'(0) such that

dist(ev, 1) < 1/(3(d — 1) C(f)),

1
802 5@y

where

C(f) := sup C(f, x).

xel

l.e., the condition number controls the separation of the roots



Probabilistic results




Randomness model I: Two properties

(SG) We call a random variable ¢ subgaussian, if there exist a K > 0
such that forall t > K,

P(|z| > t) < 2exp(—t2/K?).

The smallest such K is the subgaussian constant of .

(AC) A random variable ¢ has the anti-concentration property, if there
exists a p > 0, such that forall e > 0,

max{P(jr —u| <e) | ueR} < 2pe.

The smallest such p is the anti-concentration constant of .
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Randomness model II: Zintzo random polynomials |

Definition

Let M C N" be a finite set such that 0,eq,...,e, € M. A zintzo random
polynomial supported on M is a random polynomial

f= foX* € Png
aeM

such that the coefficients f,, are independent subgaussian random
variables with the anti-concentration property.

Note: zintzo’, from Basque, means honest, upright, righteous.

Observation: No scaling in the coefficients, as it happens with dobro
random polynomials (Cucker, Ergiir, TC; ISSAC'19)

20



Randomness model II: Zintzo random polynomials Il

For f a zintzo random polynomial, we define:

1. the subgaussian constant of § which is given by

K == ZQGM Ky (51)

where K, is the subgaussian constant of f,, and

2. the anti-concentration constants of f which is given by

pj = n+w/7p0pe1 T Deys (5.2)

where pg is the anti-concentration constant of §, and for each i,
pe, 1S the anti-concentration constant of fe,.

Ks and ps will control the complexity estimates
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Randomness model II: Zintzo random polynomials Il

Let M C N" be such that it contains 0, ey, ..., e,. These are two
important cases of zintzo random polynomials:

G A Gaussian polynomial supported on M is a zintzo random
polynomial § supported on M, the coefficients of which are i.i.d.
Gaussian random variables.

In this case, p; = 1/v2m and K; < |M|.

U A uniform random polynomial supported on M is a zintzo
random polynomial § supported on M, the coefficients of which
are i.i.d. uniform random variables on [—1,1].

In this case, p; = 1/2 and K; < [M|.
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Randomness model Ill: Smoothed case

Proposition

Let § be a zintzo random polynomial supported on M, f € Pp 4 a
polynomial supported on M, and o > 0. Then,

fo :=f+ ollfll.f

is a zintzo random polynomial supported on M such that

K, < [Ifll(1 4 oKs) and ps, < ps/(a|flh)-

In particular,
Kfapfg = (Kf + 1/0’)@;.

l.e., the smoothed case is included in our average case!
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Probabilistic bound

Theorem (T.C., Tsigaridas; ISSAC'20)

Let § € P, 4 a zintzo random polynomial supported on M. Then for all
t>e

n+1

Inz t
B(C(f.x) 2 t) < v/nd"|M| (8K;pp)™" -

Corollary (T.C., Tsigaridas; ISSAC'20)

Let § € P, 4 be a zintzo random polynomial supported on M. Then, for
all t > 2e,

01
Tt

B(C(T) > 1) < 1 VG M| (61Kipp) "™
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Application 2:
Plantinga-Vegter algorithm



Setting

What do we have?

- An implicit curve C inside [—1,1]?
given by a C' function f: [-1,1]? = R
- Interval approximations Of of f and OOVf of Vf

What do we want?

- Piecewise-linear approximation L of C in [-1,1]?such that
([-1,1]%,C) and ([-1,1]%,L) are isotopic

Any assumptions?

- C smooth

- C Intersects the boundary of [1,1]? transversely

25



Plantinga-Vegter algorithm for curves |

Algorithm: PV Algorithm for curves (Plantinga, Vegter; 2004)
Input: f: R? = R
with interval approximations O[f] and (O[V/], O[V/])

SUBDIVISION:
Starting with the trivial subdivision S := {[—1,1]"}, repeatedly
subdivide each J € S into 4 squares until forall J € S,

0 ¢ Of(J) or 0 ¢ (AVf), BVS())

CONSTRUCTION:

Construct piecewise-linear curve L

joining the midpoints of “small” edges of each J € S with oposite
f-signs at their vertices

Output: Piecewise-linear approximation L of C = f~'(0) N [—a, a]?
isotopic to it 2%




Plantinga-Vegter algorithm for curves Il: Example
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Plantinga-Vegter algorithm for curves Il: Example
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Plantinga-Vegter algorithm for curves Il: Example

27



Plantinga-Vegter algorithm for curves Il: Example
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Plantinga-Vegter algorithm for curves Il: Example
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Plantinga-Vegter algorithm in higher dimensions

1. Plantinga-Vegter algorithm can be generalized to produce
isotopic approximations of surfaces (Plantinga, Vegter; 2004)
This is really why is called Plantinga-Vegter!

Very efficient in practice

2. The subdivision method can be generalized to higher
dimensions (Burr, Gao, Tsigaridas; ISSAC2017)

We will focus on the later, since...
complexity of the algorithm is mainly that of the subdivision part

We will mainly count the number of subdivisions,
because...

cost(subdivision algorithm) ~ # (subdivisions) - cost(evaluations)

28



Subdivision in Plantinga-Vegter algorithm

Algorithm: Subdivision of PV Algorithm (Burr, Gao, Tsigaridas; ISSAC'17)
Input: f: R" - R

with interval approximations O[hf] and O[h'Vf]

for some functions h, h’ : R" — (0, 00)

Starting with the trivial subdivision S := {[—a, a]"}, repeatedly
subdivide each J € S into 2" cubes until the condition

) : 0 ¢ O[hflU) or 0 ¢ (O[h' VA, Ol VA)

holds forall) e S

Output: Subdivision § C 7, of [-a, a]”
such that forallJ € S, C¢(J)) is true

h, h’ depend on the setting and the interval arithmetic one uses
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The complexity estimate

We had...

Theorem (Cucker, Ergiir, T.C;; ISSAC'19)

Let § € P, 4 be a dobro random polynomial with parameters K and p.
The average number of boxes of the final subdivision of PV
algorithm on input § is at most

n243n _ n?+16n log(n)
2

d 2 (C1C2Kp)n+1.

We get...

Theorem (T.C., Tsigaridas; ISSAC'20) _
Let § € P, 4 be a zintzo random polynomial supported on M. The

average number of boxes of the final subdivision of PV algorithm on
input f is at most

nid?|m| (80\/n(n . 1)/<fpf)n+1 .
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An specific bound

Corollary (T.C., Tsigaridas; ISSAC'20)
Let § € P, 4 be a random polynomial supported on M. The average

number of boxes of the final subdivision of PV algorithm on input f
is at most

n+1
ni (40 n(n+ 1)) 20| M|"+2

if f is Gaussian or uniform.

31



Bere arretagatik eskerrik asko!
Merci pour votre attention!

Galderak?
Des questions?
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