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Semialgebraic sets

Semialgebraic sets are the class of geometric objects that
can be described by real polynomials and inequalities.
A way of describing a semialgebraic set is to use formulas.
Formulas are expression obtained by combining atoms of
the form

• (p(x) < 0),

• (p(x) ≤ 0),

• (p(x) = 0),

• (p(x) ≥ 0),

• (p(x) > 0) and

• (p(x) 6= 0),

which represent the most basic semialgebraic sets; using

• negations (¬), which represent complements;

• conjunctions (∧), which represent intersections; and

• disjunctions (∨), which represent unions.

Formulas should be seen as ”recipes” telling us how to
construct the described set from the most basic ones.
Example Consider the formula

((x2 + y2 − 1 ≤ 0) ∨ (3x + y = 0)) ∧ (¬(3y − x2 < 0)).

In this formula, we have three atoms: (x2 + y2− 1 ≤ 0),
which is the filled unit circle; (x+ 3y = 0), a line through
the origin; and (3y−x2 < 0), the points below a parabola.
These can be seen below:

(x2 + y2 − 1 ≤ 0) (3x + y = 0) (3y − x2 < 0)

Following the formula, on the left side, ((x2 + y2 − 1 ≤
0) ∨ (3x + y = 0)) tells us to take the points that are
given either by (x2 + y2− 1 ≤ 0) or (x+ 3y = 0) and, on
the right side, (¬(y − x2 < 0)) to take the points not in
(y − x2 < 0). These operations give the sets below:

((x2 + y2 − 1 ≤ 0) ∨ (3x + y = 0)) (¬(3y − x2 < 0))

In the last step, ((x2+y2−1 ≤ 0)∨(3x+y = 0))∧(¬(3y−
x2 < 0)) tells us to take only those points coming at the
same time both from ((x2 + y2− 1 ≤ 0) ∨ (3x + y = 0))
and (¬(3y − x2 < 0)). Below an image of the final set.

((x2 + y2 − 1 ≤ 0) ∨ (x + 3y = 0)) ∧ (¬(3y − x2 < 0))

Why do we care?

1. Semialgebraic sets are a large class of geometric objects
preserved under many of the usual operations that one
can do with sets (intersection, union, complementation,
projection,. . . ).

2. Semialgebraic sets can be used to describe:

•Configuration space of a robotic arm.

•Realization space of a polytope.

•Configuration space of a molecule.

•Regions of behavior of a real algebraic object.

Homology and shape

The shape of a geometric object X encodes so much geo-
metric information about X . Because of this, describing
the shape of X is hard.
To deal with this overflow of information, we get rid of
part of it so that one can manage what remains. In our
case, we do this by focusing on the topological properties
of the shape and, more concretely, the so-called homol-
ogy groups, denoted Hi(X).

In the above example, the red and the blue curves have
very different shapes. However, the topological proper-
ties of their shapes are the same. This shows graphically
how much information we lose about the shape.
Which information about shape do the ho-
mology groups give? In general, it is not easy to
tell exactly which topological features are captured by
the Hi(X). However, in the case of H0(X), for exam-
ple, one can see that it tells us the number of connected
components, i.e. regions of X in which you can ”walk”
from one point to the other without leaving X .

Condition and weak complexity

Our algorithm is numeric. Therefore, its performance
(i.e. how much precision it needs and how many arith-
metic operations it uses) is dominated by a condition
number.
Ill-posed inputs Those inputs for which the condition
is infinite are called ill-posed. For them, an arbitrarily
small perturbation of the coefficients of the polynomi-
als changes what we want to compute (the homology
groups). Using a numerical algorithm means accepting
that for these inputs, there will be no numerical algo-
rithm computing the answer.
How do we get rid of the condition? The condi-
tion number allows us to understand the performance of
the algorithm for each input. However, can we get such
an understanding that is not input-dependent?
To do so, we endow the inputs with a probability dis-
tribution and we compute probabilistic estimates of the
condition. One of them, which explains performance in
practice, it’s the so called weak complexity. This means
that we get a ”good” bound on the performance which
hold for all inputs excepts for those (called black swans
as they are very improbable) in an exceptional set with
exponentially small probability.

Our current result

Theorem.There is a numerical algorithm, numer-
ically stable, with input polynomial q-tuples f and
lax formulas Φ (i.e. without ”<”, ”>”, ”6=” and ”¬”)
using the polynomial in f that computes the homol-
ogy groups of the semialgebraic set described by Φ in
weak exponential time for f uniformly distributed on
the sphere.

This result is good, because we expect such an algorithm
(numeric or not) to take exponential time at least.

Core of the algorithm

1. Take the geometric object.

2. Construct a sufficiently fine grid. The size of the grid’s
mesh is controlled by the condition number.

3. Sample from the grid a cloud of points near enough
the geometric object.

4. A thickening of the sampled cloud of points will cap-
ture the shape of the geometric object.

5. Standard techniques of algebraic topology allow the
computation of the homology groups.

Open challenges

1. Can we extend the algorithm to work on general for-
mulas and not only on lax formulas?

2. Can we extend the probabilistic analysis of the condi-
tion number for more general probability distributions
of f?

3. Implement the algorithm and evaluate its performance
in practice.
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