Josué Tonelli-Cueto

Polynomial Identity Testing

Polynomial Identity Testing (PIT) is the problem of deciding if a given "program" in an algebraic computational model computes the zero polynomial.
Example: One of the PIT coming from the Symbolic Determinant is the following:
SING: Given square matrices A_{1}, \ldots, A_{m} over K
are all the matrices in $\operatorname{span}\left(A_{1}, \ldots, A_{m}\right)$ singular?
This version has the advantage of being related to prob lems in invariant theory, linear algebra and algebraic geometry
Question: Can we solve efficiently PIT?
Probabilistic solution. Using the DeMillo-Lipton-Schwartz-Zippel lemma, one can show that, for all reasonable algebraic computational models, PIT can be solved efficiently by evaluating at a randomly chosen point Open question: Can we solve efficiently PIT in a deterministic way?
Why do we care? (Kabanaets, Impagliazzo; 2004) showed that providing better algorithms for PIT, even for SING, would provide non-trivial unknown lower bounds in complexity theory.

Completely Positive Operators

A completely positive operator is a positive map Φ $\mathrm{PSD}^{\mathcal{H}} \rightarrow \mathrm{PSD}^{\mathcal{H}^{\prime}}$ such that for all $r \geq 0$,

$$
\Phi \otimes \operatorname{id}_{\mathrm{PSD}^{\mathrm{Cr}^{r}}}: \mathrm{PSD}^{\mathcal{H} \otimes \mathbb{C}^{r}} \rightarrow \mathrm{PSD}^{\mathcal{H}^{\prime} \otimes \mathbb{C}^{r}} \text { is positive. }
$$

Theorem. (Hill; 1973) (Choi; 1975) Every com pletely positive operator $\Phi: \mathrm{PSD}^{\mathcal{H}} \rightarrow \mathrm{PSD}^{\mathcal{H}^{\prime}}$ has the form $X \mapsto \sum_{i=1}^{m} A_{i} X A_{i}^{*}$ where $A_{1}, \ldots, A_{m} \in$ $\operatorname{hom}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$. Even more, this translates into an isomorphism
$\mathrm{Ch}: \operatorname{hom}_{+}\left(\mathrm{PSD}^{\mathcal{H}}, \mathrm{PSD}^{\mathcal{H}}\right) \rightarrow \operatorname{PSD}^{\mathrm{hom}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)}$ of convex cones, called the Choi-Hill isomorphism. A Kraus representation of Φ is a tuple $\left(A_{1}, \ldots, A_{m}\right)$ such that Φ has the form $X \mapsto \sum_{i=1}^{m} A_{i} X A_{i}^{*}$. It is important to note that $\operatorname{hom}_{+}\left(\mathrm{PSD}^{\mathcal{H}}, \mathrm{PSD}^{\mathcal{H}{ }^{\prime}}\right)$ and hom $\left(\operatorname{PSD}^{\mathcal{H}}, \mathrm{PSD}^{\mathcal{H}^{\prime}}\right)$ are very different in general.

Combinatorics of Positive Operators

In general, the face on which a positive map $\alpha: K \rightarrow$ K^{\prime} lies in $\operatorname{hom}\left(K, K^{\prime}\right)$, i.e., the combinatorics of ϕ, is determined by how this map sends faces to faces, i.e., by the combinatorial pushforward α_{*}. This is the map

$$
\alpha_{*}: F \mapsto \bigcap\left\{G \in \mathcal{L}\left(K^{\prime}\right) \mid G \supseteq \alpha(F)\right\}
$$

which sends F to the minimum face containing $\alpha(F)$. In the particular case of positive maps $\phi: \mathbb{R}_{\geq}^{S} \rightarrow \mathbb{R}_{\geq}^{T}$, the combinatorics of ϕ are determined by the correspondence $\mathfrak{c}(\phi):=\left\{(t, s) \in T \times S \mid e_{t}^{*} \phi\left(e_{s}\right)>0\right\}$,
also known as the support of ϕ, which is the set of nonzero entries of the matrix representing ϕ.
Interpreting correspondences as edge sets, one gets the following graph-theoretical interpretation:

Correspondence \qquad
$S \rightarrow S$ such that $\mathfrak{c}=\mathfrak{c}^{*} \quad$ Graph
This allows to generalize graph theoretical problems to the context of positive operators.

Fast introduction to information theory, convex geometry and the discrete/classical vs. continuous/quantum analogy

	Information theory	Convex Geometry	Discrete Classical	Continuous Quantum				
曾	Configuration space	Convex cone K	\mathbb{R}^{S}	PSD ${ }^{\text {H }}$				
	Probability	Strictly positive functional	1-norm \\| $\cdot \\|_{1}$	Trace map Tr				
	Uniform event	Interior point	$\mathbb{1}_{S}:=(1)_{s \in S}$	$\mathbb{I}_{\mathcal{H}}$				
	Transformation	Class of positive maps	$\begin{gathered} \text { Positive map: } \\ \phi: x \mapsto A x, \\ A \in \mathbb{R}^{T \times S} \text { with } A_{s}^{t} \geq 0 \end{gathered}$	Completely positive map: $\begin{gathered} \Phi: S \mapsto \sum_{i=1}^{m} A_{i} S A_{i}^{*}, \\ A_{i} \in \operatorname{hom}\left(\mathcal{H}, \mathcal{H}^{\prime}\right) \end{gathered}$				
	Set of transformations	$\mathcal{C} \subseteq \operatorname{hom}\left(K, K^{\prime}\right)$	$\operatorname{hom}\left(\mathbb{R}_{\geq}^{S}, \mathbb{R}_{\geq}^{T}\right) \cong \mathbb{R}_{\geq}^{T \times S}$	hom $_{+}\left(\mathrm{PSD}^{\mathcal{H}}, \mathrm{PSD}^{H^{\prime}}\right) \cong \mathrm{PSD}^{\text {hom(}}$ (, $\left.\mathcal{H}^{\prime}\right)$				
	Reverse transformation	Dual	$\begin{aligned} & \phi^{*}: x \mapsto A^{*} x, \\ & { }^{*} \text { transposition } \end{aligned}$	$\Phi^{*}: S \mapsto \sum_{i=1}^{m} A_{i}^{*} S A_{i}$ * conjugate transposition				
	Stochastic transformation	Strictly positive functional preserving	1-norm preserving: $\forall x,\\|\phi(x)\\|_{1}=\\|x\\|_{1}$	Trace preserving $\forall S, \operatorname{Tr}(\Phi(S))=\operatorname{Tr}(S)$				
	Doubly Stochastic transformation	Strictly positive funct. and uniform event preserving	$\phi, \phi^{*} 1$-norm preserving: $\phi\left(\mathbb{1}_{S}\right)=\mathbb{1}_{T}, \phi^{*}\left(\mathbb{1}_{T}\right)=\mathbb{1}_{S}$	Φ, Φ^{*} trace preserving: $\Phi\left(\mathbb{I}_{\mathcal{H}}\right)=\mathbb{I}_{\mathcal{H}^{\prime}}, \Phi^{*}\left(\mathbb{I}_{\mathcal{H}^{\prime}}\right)=\mathbb{I}_{\mathcal{H}}$				
	Composite system	"Tensor product" $K_{1} \hat{\otimes} K_{2}$	$\mathbb{R}_{\geq}^{S_{1}} \otimes \mathbb{R}_{\geq}^{S_{2}} \cong \mathbb{R}_{\geq}^{S_{0} \times S_{1}}$	$\mathrm{PSD}^{\mathcal{H}_{1}} \hat{\otimes} \mathrm{PSD}^{\mathcal{H}_{2}}:=\mathrm{PSD}^{\mathcal{H}_{1} \otimes \mathcal{H}_{2}}$				
	Composite transformation	Tensor product $F_{1} \otimes F_{2}$	$\phi \otimes \psi$	$\Phi \otimes \Psi$				
界	Configuration space	$\begin{aligned} & \text { Extreme rays } \\ & \mathbb{P}(K) \end{aligned}$	finite set S	$\mathbb{P}(\mathcal{H}),$ \mathcal{H} complex Hilbert space				
	Transformation	Partial map $\mathbb{P}(K) \rightarrow \mathbb{P}\left(K^{\prime}\right)$ induced by positive map	Partial map $f: S \rightarrow T$	Linear map $A: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$				
	Set of transformations	$\operatorname{map}\left(\mathbb{P}(K), \mathbb{P}\left(K^{\prime}\right)\right)$	$\operatorname{map}_{p}(S, T)$	hom $\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$				
	Information preserving transformation	Injective map $\mathbb{P}(K) \rightarrow \mathbb{P}\left(K^{\prime}\right)$ induced by positive map	injective map $f: S \rightarrow T$	unitary map $U: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$				
	Composite system	$\mathbb{P}\left(K_{1} \hat{\otimes} K_{2}\right)$	$S_{1} \times S_{2}$	$\mathcal{H}_{1} \otimes \mathcal{H}_{2}$				
	Composite transformation	$G_{1} \otimes G_{2}$	$f_{1} \times f_{2}$	$A_{1} \otimes A_{2}$				
$\begin{gathered} 1 \\ \vdots \\ 0 \\ \vdots \end{gathered}$	Configuration space	Face lattice $\mathcal{L}(K)$	Lattice of subsets of S $\mathcal{P}(S):=\{A \mid A \subseteq A\}$	Lattice of linear subspaces of \mathcal{H} $L(\mathcal{H}):=\{U \mid U \leq \mathcal{H}\}$				
	Transformation	Faces of \mathcal{C} and induced lattice morphisms $F_{*}: \mathcal{L}(K) \rightarrow \mathcal{L}\left(K^{\prime}\right)$	$\begin{aligned} & \text { Correspondence } \mathfrak{c}: S \rightarrow T \\ & \quad \text { Formally: } \mathfrak{c} \subseteq T \times S \\ & \mathfrak{c}_{*}(A)=\{t \mid \exists a \in A:(t, a) \in c\} \end{aligned}$	"Linear correspondence" \mathcal{A} Formally: $\mathcal{A} \leq \operatorname{hom}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$ $\mathcal{A}_{*}(U)=\{A u \mid(A, u) \in \mathcal{A} \times U\}$				
	Set of transformations	$\mathcal{L}(\mathcal{C})$	$\mathcal{P}(T \times S)$	$L\left(\operatorname{hom}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)\right)$				
	Reverse transformation	Dual face in \mathcal{C}^{*}	$\begin{aligned} & \mathfrak{c}^{*} \subseteq S \times T \\ \mathfrak{c}^{*}:= & \{(s, t) \mid(t, s) \in \mathfrak{c}\} \end{aligned}$	$\begin{gathered} \mathcal{A}^{*} \leq \operatorname{hom}\left(\mathcal{H}^{\prime}, \mathcal{H}\right) \\ \mathcal{A}^{*}:=\left\{A^{*} \mid A \in \mathcal{A}\right\} \end{gathered}$				
	Composition of transformations	"Composition of faces'	$\begin{gathered} \mathfrak{c}_{2} \circ \mathfrak{c}_{1} \subseteq S_{2} \times S_{0} \\ \left\{\left(s_{2}, s_{0}\right) \mid \exists s_{1} \in S_{1}:\left(s_{i}, s_{i-1}\right) \in \mathfrak{c}_{i}\right\} \end{gathered}$	$\begin{gathered} \mathcal{A}_{2} \circ \mathcal{A}_{1} \leq \operatorname{hom}\left(\mathcal{H}_{0}, \mathcal{H}_{2}\right) \\ \left\{A_{2} A_{1} \mid A_{i} \in \mathcal{A}_{i}\right\} \end{gathered}$				
	Composite system	$\mathcal{L}\left(K_{1} \hat{\otimes} K_{2}\right)$	$\mathcal{P}\left(S_{1} \times S_{2}\right)$	$L\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$				
	Composite transformation	$F_{1} \hat{\otimes} F_{2}$	$\begin{aligned} & \mathfrak{c}_{1} \otimes \mathfrak{c}_{2} \subseteq\left(T_{1} \times T_{2}\right) \times\left(S_{1} \times S_{2}\right) \\ & \left\{\left(\left(t_{1}, t_{2}\right),\left(s_{1}, s_{2}\right)\right) \mid\left(t_{i}, s_{i}\right) \in \mathfrak{c}_{i}\right\} \end{aligned}$	$\begin{gathered} \mathcal{A}_{1} \otimes \mathcal{A}_{2} \leq \operatorname{hom}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}, \mathcal{H}_{1}^{\prime} \otimes \mathcal{H}_{2}^{\prime}\right) \\ \left\{A_{1} \otimes A_{2} \mid A_{i} \in \mathcal{A}_{i}\right\} \\ \hline \end{gathered}$				

Combinatorics of

 Completely Positive OperatorsSince $\operatorname{hom}_{+}\left(\right.$PSD $^{\mathcal{H}}$, PSD $\left.^{\mathcal{H}^{\prime}}\right) \neq \operatorname{hom}\left(\mathrm{PSD}^{\mathcal{H}}, \mathrm{PSD}^{\mathcal{H}^{\prime}}\right)$, the combinatorics of a completely positive operator Φ are not determined by its combinatorial pushforward Φ_{*} By the Choi-Hill isomorphism, one can see that they are determined by the subspace of linear maps

$$
\mathfrak{c}(\Phi):=\operatorname{im}(\operatorname{Choi}(\Phi))
$$

which, when Φ has Kraus representation $\left(A_{1}\right.$, satisfies

$$
\mathfrak{c}(\Phi)=\operatorname{span}\left(A_{1}, \ldots, A_{m}\right) .
$$

One can see this as an indication that linear subspaces of matrices are the quantum generalization of graphs. Is a linear subspace of matrices determined by how it acts on linear subspaces? There are explicit completely positive operators Φ and Ψ such that $\operatorname{dim} \mathfrak{c}(\Phi)>\operatorname{dim} \mathfrak{c}(\Psi)$ but for which $\Phi_{*}=\Psi_{*}$.
This answers negatively the question. However, up to now, many results rely on looking at how \mathcal{A}_{*} looks like. What are the limits of these techniques?

Matching problems and SING

Using our graph theoretical interpretation, a perfect matching of a correspondence $\mathfrak{c}: S \rightarrow T$ is a bijective function $\mathfrak{m}: S \rightarrow T$ such that $\mathfrak{m} \subseteq \mathfrak{c}$
How does this generalize? In the continuous setting, a bijective function becomes an invertible linear map. Therefore a continuous perfect matching of $\mathcal{A} \leq \operatorname{hom}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$ is an invertible linear map $A \in \mathcal{A}$. In other words, the perfect matching inexistence problem in the context of completely positive operators becomes equivalent to SING
Hall blocks. (Ivanyos, Qiao, Subrahmanyam; 2016) and (Garg, Gurvits, Oliveira, Widgerson; 2016) showed that this obstruction to perfect matching existence can be generalized to completely positive operators, but it only solves a non-commutative weaker version of SING. Question: The above techniques are based on properties of the combinatorial pushforward. Are these enough to solve SING? More concretely, are there completely positive operators Φ and Ψ such that $\Phi_{*}=\Psi_{*}$ but such that $\mathfrak{c}(\Phi)$ contains an invertible map, but $\mathfrak{c}(\Psi)$ doesn't?

