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Josué Tonelli-Cueto

Polynomial Identity Testing
and the Combinatorics

of Completely Positive Operators
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Polynomial Identity Testing

Polynomial Identity Testing (PIT) is the problem
of deciding if a given ”program” in an algebraic computa-
tional model computes the zero polynomial.
Example: One of the PIT coming from the Symbolic
Determinant is the following:
SING: Given square matrices A1, . . . , Am over K,
are all the matrices in span(A1, . . . , Am) singular?

This version has the advantage of being related to prob-
lems in invariant theory, linear algebra and algebraic ge-
ometry.
Question: Can we solve efficiently PIT?
Probabilistic solution. Using the DeMillo-Lipton-
Schwartz–Zippel lemma, one can show that, for all reason-
able algebraic computational models, PIT can be solved
efficiently by evaluating at a randomly chosen point.
Open question: Can we solve efficiently PIT in a de-
terministic way?
Why do we care? (Kabanaets, Impagliazzo; 2004)
showed that providing better algorithms for PIT, even
for SING, would provide non-trivial unknown lower
bounds in complexity theory.

Completely Positive Operators

A completely positive operator is a positive map Φ :
PSDH → PSDH

′
such that for all r ≥ 0,

Φ⊗ idPSDCr : PSDH⊗C
r → PSDH

′⊗Cr

is positive.

Theorem. (Hill; 1973) (Choi; 1975) Every com-
pletely positive operator Φ : PSDH → PSDH

′
has

the form X 7→
∑m

i=1AiXA
∗
i where A1, . . . , Am ∈

hom(H,H′). Even more, this translates into an iso-
morphism

Ch : hom+(PSDH,PSDH
′
)→ PSDhom(H,H′)

of convex cones, called the Choi-Hill isomorphism.

A Kraus representation of Φ is a tuple (A1, . . . , Am)
such that Φ has the form X 7→

∑m
i=1AiXA

∗
i .

It is important to note that hom+(PSDH,PSDH
′
) and

hom(PSDH,PSDH
′
) are very different in general.

Combinatorics of Positive Operators

In general, the face on which a positive map α : K →
K ′ lies in hom(K,K ′), i.e., the combinatorics of φ, is
determined by how this map sends faces to faces, i.e., by
the combinatorial pushforward α∗. This is the map

α∗ : F 7→
⋂
{G ∈ L(K ′) | G ⊇ α(F )}

which sends F to the minimum face containing α(F ).
In the particular case of positive maps φ : RS

≥→ RT
≥, the

combinatorics of φ are determined by the correspondence

c(φ) := {(t, s) ∈ T × S | e∗tφ(es) > 0},
also known as the support of φ, which is the set of non-
zero entries of the matrix representing φ.
Interpreting correspondences as edge sets, one gets the
following graph-theoretical interpretation:

Correspondence Graph theory

c : S → T Bipartite graph

c : S → S Digraph

c : S → S such that c = c∗ Graph

This allows to generalize graph theoretical problems to
the context of positive operators.

Fast introduction to information theory, convex geometry

and the discrete/classical vs. continuous/quantum analogy

Information theory Convex Geometry
Discrete Continuous
Classical Quantum
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Configuration space Convex cone K RS
≥ PSDH

Probability Strictly positive functional 1-norm ‖ · ‖1 Trace map Tr
Uniform event Interior point 1S := (1)s∈S IH

Transformation
Positive map: Completely positive map:

Class of positive maps φ : x 7→ Ax, Φ : S 7→
∑m

i=1AiSA
∗
i ,

A ∈ RT×S with At
s ≥ 0 Ai ∈ hom(H,H′)

Set of transformations C ⊆ hom(K,K ′) hom(RS
≥,RT

≥) ∼= RT×S
≥ hom+(PSDH,PSDH

′
) ∼= PSDhom(H,H′)

Reverse
Dual

φ∗ : x 7→ A∗x, Φ∗ : S 7→
∑m

i=1A
∗
iSAi,

transformation ∗ transposition ∗ conjugate transposition
Stochastic Strictly positive functional 1-norm preserving: Trace preserving:

transformation preserving ∀x, ‖φ(x)‖1 = ‖x‖1 ∀S, Tr(Φ(S)) = Tr(S)
Doubly Stochastic Strictly positive funct. and φ, φ∗ 1-norm preserving: Φ, Φ∗ trace preserving:

transformation uniform event preserving φ(1S) = 1T , φ∗(1T ) = 1S Φ(IH) = IH′, Φ∗(IH′) = IH
Composite system ”Tensor product”K1⊗̂K2 RS1

≥ ⊗ RS2
≥
∼= RS0×S1

≥ PSDH1⊗̂PSDH2 := PSDH1⊗H2

Composite transformation Tensor product F1 ⊗ F2 φ⊗ ψ Φ⊗ Ψ
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Configuration space
Extreme rays

finite set S
P(H),

P(K) H complex Hilbert space

Transformation
Partial map P(K)→ P(K ′) Partial map Linear map
induced by positive map f : S → T A : H → H′

Set of transformations map(P(K),P(K ′)) mapp(S, T ) hom(H,H′)
Information preserving Injective map P(K)→ P(K ′) injective map unitary map

transformation induced by positive map f : S → T U : H → H′
Composite system P(K1⊗̂K2) S1 × S2 H1 ⊗H2

Composite transformation G1 ⊗G2 f1 × f2 A1 ⊗ A2
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Configuration space
Face lattice Lattice of subsets of S Lattice of linear subspaces of H
L(K) P(S) := {A | A ⊆ A} L(H) := {U | U ≤ H}

Transformation
Faces of C and Correspondence c : S → T ”Linear correspondence”A

induced lattice morphisms Formally: c ⊆ T × S Formally: A ≤ hom(H,H′)
F∗ : L(K)→ L(K ′) c∗(A) = {t | ∃a ∈ A : (t, a) ∈ c} A∗(U) = {Au | (A, u) ∈ A×U}

Set of transformations L(C) P(T × S) L(hom(H,H′))
Reverse Dual c∗ ⊆ S × T A∗ ≤ hom(H′,H)

transformation face in C∗ c∗ := {(s, t) | (t, s) ∈ c} A∗ := {A∗ | A ∈ A}
Composition ”Composition c2 ◦ c1 ⊆ S2 × S0 A2 ◦ A1 ≤ hom(H0,H2)

of transformations of faces” {(s2, s0) | ∃s1 ∈ S1 : (si, si−1) ∈ ci} {A2A1 | Ai ∈ Ai}
Composite system L(K1⊗̂K2) P(S1 × S2) L(H1 ⊗H2)

Composite
F1⊗̂F2

c1⊗c2 ⊆ (T1×T2)×(S1×S2) A1 ⊗A2 ≤ hom(H1 ⊗H2,H′1 ⊗H′2)

transformation {((t1, t2), (s1, s2)) | (ti, si) ∈ ci} {A1 ⊗ A2 | Ai ∈ Ai}

Combinatorics of

Completely Positive Operators

Since hom+(PSDH,PSDH
′
) 6= hom(PSDH,PSDH

′
), the

combinatorics of a completely positive operator Φ are
not determined by its combinatorial pushforward Φ∗.
By the Choi-Hill isomorphism, one can see that they are
determined by the subspace of linear maps

c(Φ) := im(Choi(Φ))

which, when Φ has Kraus representation (A1, . . . , Am),
satisfies

c(Φ) = span(A1, . . . , Am).

One can see this as an indication that linear subspaces
of matrices are the quantum generalization of graphs.
Is a linear subspace of matrices determined
by how it acts on linear subspaces? There are
explicit completely positive operators Φ and Ψ such that
dim c(Φ) > dim c(Ψ) but for which Φ∗ = Ψ∗.
This answers negatively the question. However, up to
now, many results rely on looking at how A∗ looks like.
What are the limits of these techniques?

Matching problems and SING

Using our graph theoretical interpretation, a perfect
matching of a correspondence c : S → T is a bijective
function m : S → T such that m ⊆ c.
How does this generalize? In the continuous set-
ting, a bijective function becomes an invertible linear
map. Therefore a continuous perfect matching of
A ≤ hom(H,H′) is an invertible linear map A ∈ A.
In other words, the perfect matching inexistence problem
in the context of completely positive operators becomes
equivalent to SING.
Hall blocks. (Ivanyos, Qiao, Subrahmanyam; 2016)
and (Garg, Gurvits, Oliveira, Widgerson; 2016) showed
that this obstruction to perfect matching existence can
be generalized to completely positive operators, but it
only solves a non-commutative weaker version of SING.
Question: The above techniques are based on proper-
ties of the combinatorial pushforward. Are these enough
to solve SING? More concretely, are there completely
positive operators Φ and Ψ such that Φ∗ = Ψ∗ but such
that c(Φ) contains an invertible map, but c(Ψ) doesn’t?
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