Kushnirenko's Fewnomials, the Number of Real Zeros \& Condition Numbers

The University of Texas at San Antonio ${ }^{\text {" }}$

Josué Tonelli-Cueto

UT San Antonio
josue.tonelli.cueto@bizkaia.eu

Elias Tsigaridas
Inria Paris \& IMJ-PRG
elias.tsigaridas@inria.fr

What is a fewnomial?

A fewnomial is a polynomial with few monomials.

The polynomia
has degree 1978, but, despite this, it has very few monomials, so it is an example of a fewnomial.

Why don't we say oligonomial?
polynomial \rightarrow poly-nomial \rightarrow много-члены \rightarrow
много члены $\longrightarrow \underset{\text { (few monomials) }}{\rightarrow}$
$\underset{\rightarrow \text { мало-члены }}{\rightarrow} \xrightarrow{\text { (many monomials) }}$ few-nomial \rightarrow fewnomial

Kushnirenko Hypotheses

Kushnirenko Hypothesis I

Topological complexity (e.g., Betti numbers) of the zero set of a real polynomial system can be controlled by the complexity of such a system (e.g., number of monomials) rather than by the degree (or the Newton polygon)

Kushnirenko Hypothesis II
The number of real zeros of a general real polynomial system
$f_{1}\left(X_{1}, \ldots, X_{n}\right)=\cdots=f_{n}\left(X_{1}, \ldots, X_{n}\right)=0$
can be bounded from above by the total number of nonzero terms of f_{1}, \ldots, f_{n}.

Kushnirenko Hypothesis III (corrected)
The number of nondegenerate real zeros of a real polynomial system

$$
f_{1}\left(X_{1}, \ldots, X_{n}\right)=\cdots=f_{n}\left(X_{1}, \ldots, X_{n}\right)=0
$$

can be bounded from above by

$$
O\left(\prod_{i=1}^{n} \# \operatorname{supp}\left(f_{i}\right)\right) .
$$

Kushnirenko Hypothesis IV
The number of nondegenerate real zeros of a real polynomial system
$f_{1}\left(X_{1}, X_{2}\right)=f_{2}\left(X_{1}, X_{2}\right)=0$
can be bounded by $Z\left(\operatorname{deg} f_{1}\right.$, \#supp $\left.f_{2}\right)$, where Z is some universal function.

Why hypotheses? In some Slavic languages, "hypothesis" is also used as "conjectur

Examples

Descartes' rule of signs: A real univariate polynomial f has at most $1+2 \#$ supp f real roots.

For a generic choice of coefficients, the system

$$
\left\{\begin{array}{l}
\alpha_{1}+\beta_{1} X+\gamma_{1} Y+\delta_{1} X Y Z^{d}=0 \\
\alpha_{2}+\beta_{2} X+\gamma_{2} Y+\delta_{2} X Y Z^{d}=0 \\
\alpha_{3}+\beta_{3} X+\gamma_{3} Y+\delta_{3} Y Y Z^{d}=0
\end{array}\right.
$$

has always d complex solutions, but at most 2 real solutions.

Some Milestones

Sevastyanov (1978): Kushnirenko hypothesis IV is true, but original version of hypothesis III is false.

Khovanskii (1991): Kushnirenko hypotheses I and II are true.

Khovanskit's Theorem (1991)

The number of nondegenerate positive zeros of a fewnomial system $f_{1}=\cdots=f_{n}=0$ in n variables is at most

$$
2^{(t-1)}(n+1)^{t-1}
$$

where $t=\#\left(\cup_{i=1}^{n} \operatorname{supp} f_{i}\right)$
Bihan, Sottile (2007): Improvement of Khovanskii's bound. Bihan, Sottile, Rojas (2008): Improvement of Khovanskii's bound for number of connected components
Bihan, Sottile (2009): Improvement of Khovanskii's bound for sum of Betti numbers

Bihan, Sottile (2007)
The number of nondegenerate positive zeros of a fewnomial system $f_{1}=\cdots=f_{n}=0$ in n variables is at most
where $t=\#\left(\cup_{i=1}^{n}\right.$ supp $\left.f_{i}\right)$.
Koiran, Portier, Tavenas (2015): Sevastyanov's lost theorem is reproven
Bürgisser, Ergür, Tonelli-Cueto (2018): A probabilistic
Kushnirenko hypothesis III is proven
Bürgisser, Ergür, Tonelli-Cueto (2018)
Let $\mathrm{A} \subset \mathbb{N}^{n}$ of size t and $\tilde{f}_{i}=\sum_{\alpha \in A} \mathfrak{f}_{i, \alpha} \chi^{\alpha}$ random polynomials in n variables such that the $\tilde{f}_{i, \alpha}$ are independent centered Gaussian whose variance only depends on $\alpha \in$ A. Then

$$
\mathbb{E}_{f} \# Z_{r}\left(\mathfrak{f}, \mathbb{R}_{+}^{n}\right) \leq \frac{1}{2^{n-1}}\binom{t}{n}
$$

where $\mathcal{Z}_{r}\left(\mathfrak{f}, \mathbb{R}_{+}^{n}\right)$ is the set of nondegenerate zeros of $\tilde{f}_{1}=$ $\cdot=\mathfrak{f}_{n}=0$ in \mathbb{R}_{+}^{n}

Probabilistic Approach

Probabilistic Reformulation
Let $\mathfrak{f}_{i}=\sum_{\alpha \in A} \mathfrak{f}_{i, \alpha} \chi^{\alpha}$ be random polynomials in n variables with some absolutely continuous distribution whose density does not vanish. Then

$$
\sup _{\ell}\left(\mathbb{E}_{f} \# \mathcal{Z}_{r}\left(\mathfrak{f}, \mathbb{R}^{n}\right)^{\ell}\right)^{\frac{1}{\ell}}=\max _{f} \# \mathcal{Z}_{r}\left(f, \mathbb{R}^{n}\right)
$$

where $\mathcal{Z}_{r}(f)$ is the set of nondegenerate zeros of $f_{1}=$
$f_{n}=0$ in \mathbb{R}^{n}.
Proof idea: A fewnomial system with maximum number of nondegenerate zeros is stable.

Condition Number

Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a real polynomial system in n variables with f_{i} of degree at most d_{i}, its condition number is

$$
\mathrm{C}(f):=\sup _{x \in\left[-1,\left.1\right|^{1}\right.} \frac{\|f\|}{\max \left\{\|f(x)\|,\left\|D_{x} f^{-1} \Delta\right\|^{-1}\right\}}
$$

where $\Delta:=\operatorname{diag}\left(\boldsymbol{d}_{1}, \ldots, d_{n}\right)$
How to think about the condition number?
Roughly, $C(f)$ is the inverse of the distance

A new bound!

MAIN Theorem (T.-C., Ts.; '22 +)
Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a real polynomial system in n variables. Then
$\# \mathcal{Z}\left(f,[-1,1]^{n}\right) \leq O(\log \mathbf{D} \max \{n \log \mathbf{D}, \log \mathrm{C}(f)\})^{n}$ where \mathbf{D} is the maximum degree.

Corollary:

Well-posed Real Polynomial Systems
have Few Real Zeros

Probabilistic Consequences

PROB. Theorem (T.-C., Ts;; '22 +)

Let $\mathfrak{f}=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{n}\right)$ be a random real fewnomial system in n variables whose coefficients are independent and uniformly distributed in $[-1,1]$. Then

$$
\mathbb{E}_{\mathfrak{f}} \# \mathcal{Z}_{r}\left(\mathfrak{f}, \mathbb{R}^{n}\right)^{\ell} \leq O\left(n \ell \log ^{2} \mathbf{D}\right)^{n \ell}
$$

where $\mathcal{Z}_{r}\left(\mathfrak{f}, \mathbb{R}^{n}\right)$ is the set of nondegenerate real zeros of $\mathfrak{f}_{1}=\cdots=\tilde{f}_{n}=0$, and \mathbf{D} is the maximum degree.

Corollary:

Fewnomial systems with many zeros
are very improbable
More general...
解

Algorithmic Consequences

Proof is fully constructible!
Issue: Computing $\mathrm{C}(f)$ is expensive
ALG. Theorem (T.-C., Ts.; '22 +)
There is a explicit partition \mathcal{B} of $[-1,1]^{n}$ into $O(\log \mathbf{D})^{n}$ boxes such that for all real polynomial system f $\left(f_{1}, \ldots, f_{n}\right)$ in n variables of degree at most \mathbf{D} and all $\mathrm{B} \in \mathcal{B}$, there is a polynomial
$\phi_{f, B}$
of degree $O(\max \{n \log \mathbf{D}, \log \mathrm{C}(f)\})$ such that

$$
\# \mathcal{Z}(f, B) \leq \# \mathcal{Z}\left(\phi_{f, B}, \mathbb{R}^{n}\right)
$$

Moreover, every real zero of f in B has a zero of $\phi_{f, B}$ that converges quadratically to it under Newton's method.

Proof idea: Well-conditioned polynomials are fast converging Taylor series

On the sphere.

We can cover also random polynomial system with the Weyl scaling. However, in this case, we are unable to cover fewnomials, and we get probabilistic bounds of the form $O(\sqrt{\mathbf{D}} \log \mathbf{D})^{n}$ appears in the bound.

